Computational enhancements in low-rank semidefinite programming

被引:22
|
作者
Burer, S [1 ]
Choi, C [1 ]
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
来源
OPTIMIZATION METHODS & SOFTWARE | 2006年 / 21卷 / 03期
基金
美国国家科学基金会;
关键词
semidefinite programming; low-rank matrices; vector programming; non-linear programming; numerical experiments;
D O I
10.1080/10556780500286582
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We discuss computational enhancements for the low-rank semidefinite programming algorithm, including the extension to block semidefinite programs (SDPs), an exact linesearch procedure, and a dynamic rank reduction scheme. A truncated-Newton method is also introduced, and several preconditioning strategies are proposed. Numerical experiments illustrating these enhancements are provided on a wide class of test problems. In particular, the truncated-Newton variant is able to achieve high accuracy in modest amounts of time on maximum-cut-type SDPs.
引用
收藏
页码:493 / 512
页数:20
相关论文
共 50 条
  • [21] Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
    Musco, Cameron
    Woodruff, David P.
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 672 - 683
  • [22] SEMIDEFINITE REPRESENTATIONS OF GAUGE FUNCTIONS FOR STRUCTURED LOW-RANK MATRIX DECOMPOSITION
    Chao, Hsiao-Han
    Vandenberghe, Lieven
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1362 - 1389
  • [23] Enhancing low-rank solutions in semidefinite relaxations of Boolean quadratic problems
    Cerone, Vito
    Fosson, Sophie M.
    Regruto, Diego
    IFAC PAPERSONLINE, 2020, 53 (02): : 1894 - 1899
  • [24] Low-rank structure in semidefinite programs derived from the KYP lemma
    Liu, Zhang
    Vandenberghe, Lieven
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2056 - 2063
  • [25] Low-Rank Positive Semidefinite Matrix Recovery From Corrupted Rank-One Measurements
    Li, Yuanxin
    Sun, Yue
    Chi, Yuejie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (02) : 397 - 408
  • [26] Efficient Low-Rank Stochastic Gradient Descent Methods for Solving Semidefinite Programs
    Chen, Jianhui
    Yang, Tianbao
    Zhu, Shenghuo
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 122 - 130
  • [27] SOLVING PHASELIFT BY LOW-RANK RIEMANNIAN OPTIMIZATION METHODS FOR COMPLEX SEMIDEFINITE CONSTRAINTS
    Huang, Wen
    Gallivan, K. A.
    Zhang, Xiangxiong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : B840 - B859
  • [28] A Low-Rank Rounding Heuristic for Semidefinite Relaxation of Hydro Unit Commitment Problems
    Paredes, M.
    Martins, L. S. A.
    Soares, S.
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [29] An equivalent nonlinear optimization model with triangular low-rank factorization for semidefinite programs
    Yamakawa, Yuya
    Ikegami, Tetsuya
    Fukuda, Ellen H. H.
    Yamashita, Nobuo
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1296 - 1310
  • [30] Solving clustered low-rank semidefinite programs arising from polynomial optimization
    Leijenhorst, Nando
    de Laat, David
    MATHEMATICAL PROGRAMMING COMPUTATION, 2024, 16 (03) : 503 - 534