Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators

被引:14
作者
Ashyralyev, Allaberen [1 ,2 ]
Hanalyev, Asker [3 ,4 ]
机构
[1] Fatih Univ, Dept Math, TR-34500 Istanbul, Turkey
[2] ITTU, Ashkhabad 74400, Turkmenistan
[3] Tejen High Sch, Tejen, Turkmenistan
[4] Turkmen State Univ, Dept Math, Ashkhabad 74400, Turkmenistan
关键词
BOUNDARY-VALUE-PROBLEMS; EVOLUTION-EQUATIONS; DIFFUSION EQUATION; SCHEMES; STABILITY; SOLVABILITY; SUBJECT;
D O I
10.1155/2014/519814
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlocal boundary value problem for the parabolic differential equation v' (t)+ A(t) v(t) = t(t) (0 <= t <= T), v(0) = v(lambda)+phi 0 < lambda <= T in an arbitrary Banach space.. with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces , 0 (t - tau)(gamma) of all E alpha-beta-valued continuous functions phi(t) on [0, T] satisfying a Holder condition with a weight (t + tau)(gamma). New Schauder type exact estimates in Holder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Multipoint problems for degenerate abstract differential equations [J].
Agarwal, R. P. ;
Shakhmurov, V. B. .
ACTA MATHEMATICA HUNGARICA, 2009, 123 (1-2) :65-89
[2]   Maximal regular boundary value problems in Banach-valued weighted space [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Shakhmurov, Veli B. .
BOUNDARY VALUE PROBLEMS, 2005, 2005 (01) :9-42
[3]   Approximate Solutions of Delay Parabolic Equations with the Dirichlet Condition [J].
Agirseven, Deniz .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[4]  
[Anonymous], 1988, ANAL MATH CALCUL NUM
[5]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[6]   A Note on the Stability of the Integral-Differential Equation of the Parabolic Type in a Banach Space [J].
Ashyraliyev, Maksat .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[7]   Stability of difference schemes for hyperbolic-parabolic equations [J].
Ashyralyev, A ;
Ozdemir, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) :1443-1476
[8]  
ASHYRALYEV A, 1988, DOPOV AKAD NAUK A, P3
[9]  
Ashyralyev A, 2012, TWMS J APPL ENG MATH, V2, P75
[10]  
Ashyralyev A., 2001, Abstract and Applied Analysis, V6, P53, DOI 10.1155/S1085337501000495