Optimal heat transport solutions for Rayleigh-Benard convection

被引:30
|
作者
Sondak, David [1 ]
Smith, Leslie M. [1 ,2 ]
Waleffe, Fabian [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Benard convection; computational methods; turbulent convection; TURBULENT THERMAL-CONVECTION; ENERGY-DISSIPATION; INCOMPRESSIBLE FLOWS; VARIATIONAL BOUNDS; DECOMPOSITION; NUMBERS;
D O I
10.1017/jfm.2015.615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers Pr and Rayleigh number up to Ra similar to 10(9). Power-law scalings of Nu similar to Ra-gamma are observed with gamma approximate to 0.31, where the Nusselt number Nu is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on Pr is found to be extremely weak. On the other hand, the presence of two local maxima of Nu with different horizontal wavenumbers at the same Ra leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For Pr. 7, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid, which spawns left/right horizontal arms near the top of the channel, leading to downdraughts adjacent to the central updraught. For Pr > 7 at high enough Ra, the optimal structure is a single updraught lacking significant horizontal structure, and characterized by the larger maximal wavenumber.
引用
收藏
页码:565 / 595
页数:31
相关论文
共 50 条
  • [41] Scaling behaviour in Rayleigh-Benard convection with and without rotation
    King, E. M.
    Stellmach, S.
    Buffett, B.
    JOURNAL OF FLUID MECHANICS, 2013, 717 : 449 - 471
  • [42] Boundary layer structure in turbulent Rayleigh-Benard convection
    Shi, Nan
    Emran, Mohammad S.
    Schumacher, Joerg
    JOURNAL OF FLUID MECHANICS, 2012, 706 : 5 - 33
  • [43] On the role of roughness valleys in turbulent Rayleigh-Benard convection
    Belkadi, Mebarek
    Sergent, Anne
    Fraigneau, Yann
    Podvin, Berengere
    JOURNAL OF FLUID MECHANICS, 2021, 923
  • [44] Turbulent Rayleigh-Benard convection with bubbles attached to the plate
    Liu, Hao-Ran
    Chong, Kai Leong
    Yang, Rui
    Verzicco, Roberto
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2022, 945
  • [45] Plume emission statistics in turbulent Rayleigh-Benard convection
    van der Poel, Erwin P.
    Verzicco, Roberto
    Grossmann, Siegfried
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2015, 772 : 5 - 15
  • [46] Axially homogeneous Rayleigh-Benard convection in a cylindrical cell
    Schmidt, Laura E.
    Calzavarini, Enrico
    Lohse, Detlef
    Toschi, Federico
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2012, 691 : 52 - 68
  • [47] Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection
    Ahlers, Guenter
    Grossmann, Siegfried
    Lohse, Detlef
    REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 503 - 537
  • [48] Properties of the mean pressure in Rayleigh-Benard convection
    Wei, Tie
    PHYSICS OF FLUIDS, 2020, 32 (04)
  • [49] Ergodicity in randomly forced Rayleigh-Benard convection
    Foldes, J.
    Glatt-Holtz, N. E.
    Richards, G.
    Whitehead, J. P.
    NONLINEARITY, 2016, 29 (11) : 3309 - 3345
  • [50] Turbulent Rayleigh-Benard convection in spherical shells
    Gastine, Thomas
    Wicht, Johannes
    Aurnou, Jonathan M.
    JOURNAL OF FLUID MECHANICS, 2015, 778 : 721 - 764