Optimal heat transport solutions for Rayleigh-Benard convection

被引:33
作者
Sondak, David [1 ]
Smith, Leslie M. [1 ,2 ]
Waleffe, Fabian [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Benard convection; computational methods; turbulent convection; TURBULENT THERMAL-CONVECTION; ENERGY-DISSIPATION; INCOMPRESSIBLE FLOWS; VARIATIONAL BOUNDS; DECOMPOSITION; NUMBERS;
D O I
10.1017/jfm.2015.615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers Pr and Rayleigh number up to Ra similar to 10(9). Power-law scalings of Nu similar to Ra-gamma are observed with gamma approximate to 0.31, where the Nusselt number Nu is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on Pr is found to be extremely weak. On the other hand, the presence of two local maxima of Nu with different horizontal wavenumbers at the same Ra leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For Pr. 7, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid, which spawns left/right horizontal arms near the top of the channel, leading to downdraughts adjacent to the central updraught. For Pr > 7 at high enough Ra, the optimal structure is a single updraught lacking significant horizontal structure, and characterized by the larger maximal wavenumber.
引用
收藏
页码:565 / 595
页数:31
相关论文
共 63 条
[41]   Observation of the 1/2 power law in Rayleigh-Benard convection -: art. no. 045303 [J].
Roche, PE ;
Castaing, B ;
Chabaud, B ;
Hébral, B .
PHYSICAL REVIEW E, 2001, 63 (04) :453031-453034
[42]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[43]   Newton-Krylov continuation of periodic orbits for Navier-Stokes flows [J].
Sánchez, J ;
Net, M ;
García-Archilla, B ;
Simó, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) :13-33
[44]   Dynamic mode decomposition of numerical and experimental data [J].
Schmid, Peter J. .
JOURNAL OF FLUID MECHANICS, 2010, 656 :5-28
[45]   HEAT-TRANSPORT IN HIGH-RAYLEIGH-NUMBER CONVECTION [J].
SHRAIMAN, BI ;
SIGGIA, ED .
PHYSICAL REVIEW A, 1990, 42 (06) :3650-3653
[46]   HIGH RAYLEIGH NUMBER CONVECTION [J].
SIGGIA, ED .
ANNUAL REVIEW OF FLUID MECHANICS, 1994, 26 :137-168
[47]   Low-dimensional modelling of turbulence using the proper orthogonal decomposition: A tutorial [J].
Smith, TR ;
Moehlis, J ;
Holmes, P .
NONLINEAR DYNAMICS, 2005, 41 (1-3) :275-307
[48]   The unifying theory of scaling in thermal convection: the updated prefactors [J].
Stevens, Richard J. A. M. ;
van der Poel, Erwin P. ;
Grossmann, Siegfried ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2013, 730 :295-308
[49]  
Stretch D, 1990, AUTOMATED PATTERN ED, P145
[50]   Mean flow structure in thermal convection in a cylindrical cell of aspect ratio one half [J].
Stringano, G ;
Verzicco, R .
JOURNAL OF FLUID MECHANICS, 2006, 548 :1-16