Optimal heat transport solutions for Rayleigh-Benard convection

被引:32
作者
Sondak, David [1 ]
Smith, Leslie M. [1 ,2 ]
Waleffe, Fabian [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Benard convection; computational methods; turbulent convection; TURBULENT THERMAL-CONVECTION; ENERGY-DISSIPATION; INCOMPRESSIBLE FLOWS; VARIATIONAL BOUNDS; DECOMPOSITION; NUMBERS;
D O I
10.1017/jfm.2015.615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers Pr and Rayleigh number up to Ra similar to 10(9). Power-law scalings of Nu similar to Ra-gamma are observed with gamma approximate to 0.31, where the Nusselt number Nu is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on Pr is found to be extremely weak. On the other hand, the presence of two local maxima of Nu with different horizontal wavenumbers at the same Ra leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For Pr. 7, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid, which spawns left/right horizontal arms near the top of the channel, leading to downdraughts adjacent to the central updraught. For Pr > 7 at high enough Ra, the optimal structure is a single updraught lacking significant horizontal structure, and characterized by the larger maximal wavenumber.
引用
收藏
页码:565 / 595
页数:31
相关论文
共 63 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]   Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number [J].
Amati, G ;
Koal, K ;
Massaioli, F ;
Sreenivasan, KR ;
Verzicco, R .
PHYSICS OF FLUIDS, 2005, 17 (12) :1-4
[3]  
[Anonymous], 1996, NUMERICAL METHODS UN
[4]  
[Anonymous], 2013, HYDRODYNAMIC HYDROMA
[5]  
[Anonymous], 2004, Hydrodynamic Stability
[6]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[7]   Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection [J].
Bailon-Cuba, J. ;
Emran, M. S. ;
Schumacher, J. .
JOURNAL OF FLUID MECHANICS, 2010, 655 :152-173
[8]   Effect of inertia in Rayleigh-Benard convection [J].
Breuer, M ;
Wessling, S ;
Schmalzl, J ;
Hansen, U .
PHYSICAL REVIEW E, 2004, 69 (02) :026302-1
[9]   ON HOWARDS UPPER BOUND FOR HEAT TRANSPORT BY TURBULENT CONVECTION [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1969, 37 :457-&
[10]   Turbulent Rayleigh-Benard convection in gaseous and liquid He [J].
Chavanne, X ;
Chillà, F ;
Chabaud, B ;
Castaing, B ;
Hébral, B .
PHYSICS OF FLUIDS, 2001, 13 (05) :1300-1320