Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries

被引:65
|
作者
Wang, Min-Jun [1 ]
Yu, Fu-Da [1 ]
Sun, Gang [1 ]
Wang, Jian [2 ]
Zhou, Ji-Gang [2 ]
Gu, Da-Ming [1 ]
Wang, Zhen-Bo [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, 92 West Da Zhi St, Harbin 150001, Heilongjiang, Peoples R China
[2] Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CATHODE MATERIALS; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; COMPOSITE ELECTRODES; MANGANESE-OXIDE; SPINEL CATHODE; OXYGEN LOSS; STABILITY; NICKEL;
D O I
10.1039/c9ta00783k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich layered materials, despite their high specific capacity up to 250 mA h g(-1), suffer from structural transformation either in the initial activation or after cycling, causing continuous voltage decay and capacity fading. Anion doping has been widely considered as a way to stabilize the intrinsic structure and improve the electrochemical performance of Li-rich materials, though with the pain of process complexity and limitation. Here, we report a simple co-precipitation method with a dual sedimentating agent to realize phosphor doping in both the surface and bulk. X-ray diffraction Rietveld refinement results indicate that the doped sample presents a larger lattice spacing than the normal sample and a Li3PO4 protective layer in situ forms on the surface. Synchrotron scanning transmission X-ray microscopy (STXM) reveals commendable homogeneity in the phase distribution between the surface and bulk in the doped sample. X-ray absorption near edge structure (XANES) shows a more homogeneous local chemical environment of the doped sample by investigating the Mn, Ni, and Co L-edges and O K-edge spectra. The doped sample displays a high discharge capacity of 295 mA h g(-1) with an initial coulombic efficiency of 90.5% at 0.1C, showing a high rate performance of 247 mA h g(-1) at 1C and a superior capacity retention of 73% after 500 cycles. Moreover, this doping strategy also inhibits the critical voltage decay of Li-rich materials during cycling. The prolonged structural evolution analysis demonstrates that phosphor doping can play a stabilizing role in Li-rich materials to restrain the transformation from layer to spinel.
引用
收藏
页码:8302 / 8314
页数:13
相关论文
共 50 条
  • [21] Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries
    Fu, Fang
    Yao, Yuze
    Wang, Haiyan
    Xu, Gui-Liang
    Amine, Khalil
    Sun, Shi-Gang
    Shao, Minhua
    NANO ENERGY, 2017, 35 : 370 - 378
  • [22] Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries
    Ates, Mehmet Nurullah
    Jia, Qingying
    Shah, Ankita
    Busnaina, Ahmed
    Mukerjee, Sanjeev
    Abraham, K. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : A290 - A301
  • [23] Ion-Exchange: A Promising Strategy to Design Li-Rich and Li-Excess Layered Cathode Materials for Li-Ion Batteries
    Cao, Xin
    Qiao, Yu
    Jia, Min
    He, Ping
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2022, 12 (04)
  • [24] Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li ion batteries
    Xu, Chunying
    Li, Jili
    Sun, Jie
    Zhang, Wanzhen
    Ji, Baoming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
  • [25] The Effect of Polyanion-Doping on the Structure and Electrochemical Performance of Li-Rich Layered Oxides as Cathode for Lithium-Ion Batteries
    Zhang, Hong-Zhou
    Li, Fang
    Pan, Gui-Ling
    Li, Guo-Ran
    Gao, Xue-Ping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1899 - A1904
  • [26] Li-Rich Layered/Spinel Heterostructured Special Morphology Cathode Material with High Rate Capability for Li-Ion Batteries
    Yi, Lanhua
    Liu, Zhongshu
    Yu, Ruizhi
    Zhao, Caixian
    Peng, Hongfeng
    Liu, Meihong
    Wu, Bing
    Chen, Manfang
    Wang, Xianyou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 11005 - 11015
  • [27] Stabilizing Li-Rich Layered Cathode Materials Using a LiCoMnO4 Spinel Nanolayer for Li-Ion Batteries
    Lin, Hsiu-Fen
    Cheng, Si-Ting
    Chen, De-Zhen
    Wu, Nian-Ying
    Jiang, Zong-Xiao
    Chang, Chun-Ting
    NANOMATERIALS, 2022, 12 (19)
  • [28] High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries
    Song, Bohang
    Liu, Hongwei
    Liu, Zongwen
    Xiao, Pengfei
    Lai, Man On
    Lu, Li
    SCIENTIFIC REPORTS, 2013, 3
  • [29] High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries
    Redel, Katarzyna
    Kulka, Andrzej
    Plewa, Anna
    Molenda, Janina
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5333 - A5342
  • [30] Challenges and strategies of lithium-rich layered oxides for Li-ion batteries
    Nie, Lu
    Chen, Shaojie
    Liu, Wei
    NANO RESEARCH, 2023, 16 (01) : 391 - 402