Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2013年 / 65卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [41] MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS
    Dumitrescu, Olivia
    Mulase, Motohico
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (02): : 307 - 328
  • [42] ON THE RECURSION FORMULA FOR DOUBLE HURWITZ NUMBERS
    Zhu, Shengmao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3749 - 3760
  • [43] On double Hurwitz numbers with completed cycles
    Shadrin, S.
    Spitz, L.
    Zvonkine, D.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 407 - 432
  • [44] Cut-and-join structure and integrability for spin Hurwitz numbers
    Mironov, A.
    Morozov, A.
    Natanzon, S.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (02):
  • [45] Towards the geometry of double Hurwitz numbers
    Goulden, IP
    Jackson, DM
    Vakil, R
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 43 - 92
  • [47] Weighted Hurwitz numbers and topological recursion: An overview
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [48] Optimal estimates for an average of Hurwitz class numbers
    Sugiyama, Shingo
    Tsuzuki, Masao
    RAMANUJAN JOURNAL, 2020, 52 (01): : 91 - 104
  • [49] Hurwitz numbers and integrable hierarchy of Volterra type
    Takasaki, Kanehisa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (43)
  • [50] Explicit computation of some families of Hurwitz numbers
    Petronio, Carlo
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 136 - 151