Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2013年 / 65卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [21] b-Monotone Hurwitz Numbers: Virasoro Constraints, BKP Hierarchy, and O(N)-BGW Integral
    Bonzom, Valentin
    Chapuy, Guillaume
    Dolega, Maciej
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 12172 - 12230
  • [22] Jacobi Ensemble, Hurwitz Numbers and Wilson Polynomials
    Gisonni, Massimo
    Grava, Tamara
    Ruzza, Giulio
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [23] Hurwitz numbers, matrix models and enumerative geometry
    Bouchard, Vincent
    Marino, Marcos
    FROM HODGE THEORY TO INTEGRABILITY AND TQFT: TT*- GEOMETRY, 2008, 78 : 263 - +
  • [24] Generalized string equations for double Hurwitz numbers
    Takasaki, Kanehisa
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1135 - 1156
  • [25] Hurwitz Numbers: On the Edge Between Combinatorics and Geometry
    Lando, Sergei K.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2444 - 2470
  • [26] Simple Maps, Hurwitz Numbers, and Topological Recursion
    Borot, Gaetan
    Garcia-Failde, Elba
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (02) : 581 - 654
  • [27] Lozenge Tilings and Hurwitz Numbers
    Jonathan Novak
    Journal of Statistical Physics, 2015, 161 : 509 - 517
  • [28] Pruned double Hurwitz numbers
    Hahn, Marvin Anas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [29] Multispecies Weighted Hurwitz Numbers
    Harnad, J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [30] Hurwitz numbers for real polynomials
    Itenberg, Ilia
    Zvonkine, Dimitri
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 441 - 474