Monotone Hurwitz Numbers in Genus Zero

被引:22
|
作者
Goulden, I. P. [1 ]
Guay-Paquet, Mathieu [1 ]
Novak, Jonathan [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2013年 / 65卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz numbers; matrix models; enumerative geometry; MATRIX MODELS; FACTORIZATIONS; ENUMERATION; INTEGRALS; CURVES;
D O I
10.4153/CJM-2012-038-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hurwitz numbers count branched covers of the Riemann sphere with specified ramification data, or equivalently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone Hurwitz numbers count a restricted subset of these branched covers related to the expansion of complete symmetric functions in the Jucys-Murphy elements, and have arisen in recent work on the the asymptotic expansion of the Harish-Chandra-Itzykson-Zuber integral. In this paper we begin a detailed study of monotone Hurwitz numbers. We prove two results that are reminiscent of those for classical Hurwitz numbers. The first is the monotone join-cut equation, a partial differential equation with initial conditions that characterizes the generating function for monotone Hurwitz numbers in arbitrary genus. The second is our main result, in which we give an explicit formula for monotone Hurwitz numbers in genus zero.
引用
收藏
页码:1020 / 1042
页数:23
相关论文
共 50 条
  • [1] Polynomiality of monotone Hurwitz numbers in higher genera
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ADVANCES IN MATHEMATICS, 2013, 238 : 1 - 23
  • [2] QUASI-POLYNOMIALITY OF MONOTONE ORBIFOLD HURWITZ NUMBERS AND GROTHENDIECK'S DESSINS D'ENFANTS
    Kramer, Reinier
    Lewanski, Danilo
    Shadrin, Sergey
    DOCUMENTA MATHEMATICA, 2019, 24 : 857 - 898
  • [3] Topological recursion and a quantum curve for monotone Hurwitz numbers
    Do, Norman
    Dyer, Alastair
    Mathews, Daniel V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 19 - 36
  • [4] Weighted Hurwitz Numbers and Topological Recursion
    Alexandrov, A.
    Chapuy, G.
    Eynard, B.
    Harnad, J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (01) : 237 - 305
  • [5] Cut-and-join equation for monotone Hurwitz numbers revisited
    Dunin-Barkowski, P.
    Kramer, R.
    Popolitov, A.
    Shadrin, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 1 - 6
  • [6] RANDOM PARTITIONS UNDER THE PLANCHEREL-HURWITZ MEASURE, HIGH-GENUS HURWITZ NUMBERS AND MAPS
    Chapuy, Guillaume
    Louf, Baptiste
    Walsh, Harriet
    ANNALS OF PROBABILITY, 2024, 52 (04): : 1225 - 1252
  • [7] Around spin Hurwitz numbers
    Mironov, A. D.
    Morozov, A.
    Natanzon, S. M.
    Orlov, A. Yu
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (05)
  • [8] The tensor Harish-Chandra-Itzykson-Zuber integral I: Weingarten calculus and a generalization of monotone Hurwitz numbers
    Collins, Benoit
    Gurau, Razvan
    Lionni, Luca
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (05) : 1851 - 1897
  • [9] Tropical Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (02) : 241 - 265
  • [10] Tropical real Hurwitz numbers
    Hannah Markwig
    Johannes Rau
    Mathematische Zeitschrift, 2015, 281 : 501 - 522