A SINC QUADRATURE METHOD FOR THE URYSOHN INTEGRAL EQUATION

被引:2
作者
Maleknejad, K. [1 ]
Nedaiasl, K. [1 ,2 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 1684613114, Iran
[2] Inst Adv Studies Basic Sci IASB, Zanjan 45195, Iran
关键词
Urysohn integral equation; sinc approximation; Nystrom method; COLLOCATION-TYPE METHOD; MULTILEVEL AUGMENTATION METHOD; ITERATED PROJECTION METHODS; HAMMERSTEIN EQUATIONS; NUMERICAL-METHODS; 2ND KIND; SUPERCONVERGENCE; TRANSFORMATION; APPROXIMATION;
D O I
10.1216/JIE-2013-25-3-407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the numerical approximation of the Urysohn integral equation with two methods. The methods are developed by means of the sinc approximation with the Single Exponential (SE) and Double Exponential (DE) transformations. These numerical methods combine a sinc Nystrom method with the Newton iterative process that involves solving a nonlinear system of equations. We provide an error analysis for the methods. These methods improve conventional results and achieve exponential convergence. Some numerical examples are given to confirm the accuracy and ease of implementation of the methods.
引用
收藏
页码:407 / 429
页数:23
相关论文
共 43 条
[1]  
[Anonymous], 1997, Numerical Analysis, Brooks
[2]  
Anselone P. M., 1971, Collectively Compact Operator Approximation Theory and Applications to Integral Equations
[3]   On the semilocal convergence of efficient Chebyshev-Secant-type methods [J].
Argyros, I. K. ;
Ezquerro, J. A. ;
Gutierrez, J. M. ;
Hernandez, M. A. ;
Hilout, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (10) :3195-3206
[4]  
Argyros I.K., 1973, SIAM J NUMER ANAL, V10, P799
[5]  
Argyros I.K., 1997, NUMERICAL SOLUTION I
[6]  
Argyros I.K., 1992, J INTEGRAL EQU APPL, V4, P15
[7]  
Atkinson K.E., 1983, IMA J NUMER ANAL, V13, P195
[8]  
Atkinson K.E., 1988, J INTEGRAL EQUAT, V13, P17
[9]   PROJECTION AND ITERATED PROJECTION METHODS FOR NONLINEAR INTEGRAL-EQUATIONS [J].
ATKINSON, KE ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1352-1373
[10]   Fast multilevel augmentation method for nonlinear integral equations [J].
Chen, Jian .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (01) :80-89