A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process

被引:92
作者
McAdams, HP [1 ]
Acklin, R
Blake, T
Du, XH
Eliason, J
Fong, J
Kraus, WF
Liu, D
Madan, S
Moise, T
Natarajan, S
Qian, N
Qiu, YC
Remack, KA
Rodriguez, J
Roscher, J
Seshadri, A
Summerfelt, SR
机构
[1] Texas Instruments Inc, Dallas, TX 75243 USA
[2] Ramtron Int Corp, Colorado Springs, CO 80921 USA
[3] Integrated Silicon Solut Inc, Santa Clara, CA 95054 USA
[4] Atmos Corp, Stittsville, ON K2S 1W6, Canada
关键词
embedded FRAM (eFRAM); ferroelectric memory; ferroelectric random access memory (FRAM); non-volatile; overwrite sense amplifier; programmable reference generation; 1T1C;
D O I
10.1109/JSSC.2004.825241
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A low-voltage (1.3 V) 64-Mb ferroelectric random access memory (FRAM) using a one-transistor one-capacitor (1T1C) cell has been fabricated using a state-of-the-art 130-nm transistor and a five-level Cu/flouro-silicate glass (FSG) interconnect process. Only two additional masks are required for integration of the ferroelectric module into a single-gate-oxide low-voltage logic process. Novel overwrite sense amplifier and programmable ferroelectric reference generation schemes are employed for fast reliable read-write cycle operation. Address access time for the memory is less than 30 ns while consuming less than 0.8 mW/MHz at 1.37 V. An embedded FRAM (eFRAM) density of 1.13 Mb/mm(2) is achieved with a cell size of 0.54 mum(2) and capacitor size of 0.25 mum(2).
引用
收藏
页码:667 / 677
页数:11
相关论文
共 14 条
[1]   The charge-share modified precharge-level (CSM) architecture for high-speed and low-power ferroelectric memory [J].
Fujisawa, H ;
Sakata, T ;
Sekiguchi, T ;
Nagashima, O ;
Kimura, K ;
Kajigaya, K .
1996 SYMPOSIUM ON VLSI CIRCUITS - DIGEST OF TECHNICAL PAPERS, 1996, :50-51
[2]   A 0.4-μm 3.3-v 1T1C 4-Mb nonvolatile ferroelectric RAM with fixed bitline reference voltage scheme and data protection circuit [J].
Jeon, BG ;
Choi, MK ;
Song, Y ;
Oh, SK ;
Chung, Y ;
Suh, KD ;
Kim, K .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (11) :1690-1694
[3]   Modeling ferroelectric capacitor switching using a parallel-elements model [J].
Jiang, B ;
Lee, JC ;
Zurcher, P ;
Jones, RE .
INTEGRATED FERROELECTRICS, 1997, 16 (1-4) :199-208
[4]  
Jiang B, 1997, 1997 SYMPOSIUM ON VLSI TECHNOLOGY, P141, DOI 10.1109/VLSIT.1997.623738
[5]  
Kang HB, 2001, 2001 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, P125
[6]  
KRAUS W, 1998, S VLSI CIRC, P242
[7]   A 64Mbit embedded FeRAM utilizing a 130nm, 5LM Cu/FSG logic process [J].
McAdams, H ;
Acklin, R ;
Blake, T ;
Fong, J ;
Liu, D ;
Madan, S ;
Moise, T ;
Natarajan, S ;
Qian, N ;
Qui, Y ;
Roscher, J ;
Seshadri, A ;
Summerfelt, S ;
Du, X ;
Eliason, J ;
Kraus, W ;
Lanham, R ;
Li, F ;
Pietrzyk, C ;
Rickes, J .
2003 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2003, :175-176
[8]  
MIYAKAWA T, 1999, IEEE INT SOL STAT CI, V42, P104
[9]  
Moise T. S., 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), P940, DOI 10.1109/IEDM.1999.824305
[10]  
Moise TS, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P535, DOI 10.1109/IEDM.2002.1175897