Thermooxidative decomposition (TOD) of seven coal samples from different deposits (Bulgaria, Russia, Ukraine) was studied with the aim to determine characteristics of the process and the differences related to the origin of the coal samples studied. The experiments with a Setaram Setsys 1750 or Labsys Evo 1600 thermoanalyzers coupled to a Nicolet 380 FTIR spectrometer or Pfeiffer mass spectrometer, respectively, were carried out under non-isothermal heating conditions up to 1,000 A degrees C at the heating rates of 1, 2, 5, 10, and 20 A degrees C min(-1) in an oxidizing atmosphere. A model-free kinetic analysis approach based on the differential isoconversional method of Friedman was used to calculate the kinetic parameters. The combined TG-FTIR and TG-MS study of TOD of the coal samples made it possible to identify a number of gaseous species formed and evolved at that as well as to determine the differences in the thermal behavior of the coal samples and in the emission profiles of these species depending on their origin. The value of activation energy E along the reaction progress alpha varied more for the samples with higher content of organic matter and, especially, for the samples having at that also quite high content of mineral matter, indicating to the close association of mineral matter with organic matter and fixed carbon.