Hardy-type inequality with double singular kernels

被引:6
|
作者
Fabricant, Alexander [1 ]
Kutev, Nikolai [1 ]
Rangelov, Tsviatko [1 ]
机构
[1] Inst Math & Informat, Sofia 1113, Bulgaria
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 09期
关键词
Hardy inequality; Sharp estimates;
D O I
10.2478/s11533-013-0260-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hardy-type inequality with singular kernels at zero and on the boundary a,Omega is proved. Sharpness of the inequality is obtained for Omega= B (1)(0).
引用
收藏
页码:1689 / 1697
页数:9
相关论文
共 50 条
  • [1] Note on Sharp Hardy-Type Inequality
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (01) : 31 - 44
  • [2] Note on Sharp Hardy-Type Inequality
    Alexander Fabricant
    Nikolai Kutev
    Tsviatko Rangelov
    Mediterranean Journal of Mathematics, 2014, 11 : 31 - 44
  • [3] A Hardy-type inequality in two dimensions
    Kumar, Suket
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 247 - 260
  • [4] A Hardy-type inequality and its applications
    Yu. A. Dubinskii
    Proceedings of the Steklov Institute of Mathematics, 2010, 269 : 106 - 126
  • [5] A Hardy-Type Inequality and Its Applications
    Dubinskii, Yu. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 (01) : 106 - 126
  • [6] Sharp Hardy Inequalities in Star-shaped Domains with Double Singular Kernels
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [7] Sharp Hardy Inequalities in Star-shaped Domains with Double Singular Kernels
    Alexander Fabricant
    Nikolai Kutev
    Tsviatko Rangelov
    Mediterranean Journal of Mathematics, 2017, 14
  • [8] A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator
    Biagio Cassano
    Fabio Pizzichillo
    Luis Vega
    Revista Matemática Complutense, 2020, 33 : 1 - 18
  • [9] On Hardy-type integral inequalities
    冷拓
    冯勇
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (10) : 1297 - 1304
  • [10] On Perturbative Hardy-Type Inequalities
    Gesztesy, Fritz
    Nichols, Roger
    Pang, Michael M. H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (01) : 128 - 149