Hardy-type inequality with double singular kernels

被引:6
作者
Fabricant, Alexander [1 ]
Kutev, Nikolai [1 ]
Rangelov, Tsviatko [1 ]
机构
[1] Inst Math & Informat, Sofia 1113, Bulgaria
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 09期
关键词
Hardy inequality; Sharp estimates;
D O I
10.2478/s11533-013-0260-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hardy-type inequality with singular kernels at zero and on the boundary a,Omega is proved. Sharpness of the inequality is obtained for Omega= B (1)(0).
引用
收藏
页码:1689 / 1697
页数:9
相关论文
共 9 条
[1]   An improved Hardy-Sobolev inequality and its application [J].
Adimurthi ;
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :489-505
[2]   On Hardy inequalities with a remainder term [J].
Alvino A. ;
Volpicelli R. ;
Volzone B. .
Ricerche di Matematica, 2010, 59 (2) :265-280
[3]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[4]   Optimizing Improved Hardy Inequalities [J].
Filippas, S ;
Tertikas, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (01) :186-233
[5]   On the best possible remaining term in the Hardy inequality [J].
Ghoussoub, Nassif ;
Moradifam, Amir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (37) :13746-13751
[6]  
Gradsteyn I.S., 1980, TABLE INTEGRALS SERI
[7]   Dirichlet and Neumann problems to critical Emden-Fowler type equations [J].
Nazarov, Alexander I. .
JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (1-3) :289-303
[8]   Existence of minimizers for Schrodinger operators under domain perturbations with application to Hardy's inequality [J].
Pinchover, Y ;
Tintarev, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (04) :1061-1074
[9]   Sobolev-Hardy space with general weight [J].
Shen, Yaotian ;
Chen, Zhihui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) :675-690