Spin clusters and conformal field theory

被引:8
|
作者
Delfino, G. [1 ,2 ]
Picco, M. [3 ]
Santachiara, R. [4 ]
Viti, J. [5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, I-34136 Trieste, Italy
[3] Univ Paris 06, LPTHE, UMR CNRS UMR 7589, F-75252 Paris, France
[4] Univ Paris 11, LPTHE, UMR CNRS UMR 8626, F-91405 Orsay, France
[5] Ecole Normale Super, LPT, F-75231 Paris 05, France
[6] CNRS, Paris 05, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2013年
关键词
classical Monte Carlo simulations; critical exponents and amplitudes (theory); renormalization group; FORTUIN-KASTELEYN CLUSTERS; STATE POTTS-MODEL; SYMMETRY; DROPLETS; ALGEBRA;
D O I
10.1088/1742-5468/2013/11/P11011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study numerically the fractal dimensions and the bulk three-point connectivity for spin clusters of the Q-state Potts model in two dimensions with 1 <= Q <= 4. We check that the usually invoked correspondence between FK clusters and spin clusters works at the level of fractal dimensions. However, the fine structure of the conformal field theories describing critical clusters first manifests at the level of the three-point connectivities. Contrary to what was recently found for FK clusters, no obvious relation emerges for generic Q between the spin cluster connectivity and the structure constants obtained from analytic continuation of the minimal model constants. The numerical results strongly suggest that spin and FK clusters are described by conformal field theories with different realizations of the color symmetry of the Potts model.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Coends in conformal field theory
    Fuchs, Juergen
    Schweigert, Christoph
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS, 2017, 695 : 65 - 81
  • [22] Decoherence in conformal field theory
    del Campo, Adolfo
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [23] Irrational conformal field theory
    Halpern, MB
    Kiritsis, E
    Obers, NA
    Clubok, K
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 265 (1-2): : 2 - 138
  • [24] Warped conformal field theory
    Detournay, Stephane
    Hartman, Thomas
    Hofman, Diego M.
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [25] On conformal field theory of SLE(κ, ρ)
    Kytola, Kalle
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (06) : 1169 - 1181
  • [26] Defects in conformal field theory
    Marco Billò
    Vasco Gonçalves
    Edoardo Lauria
    Marco Meineri
    Journal of High Energy Physics, 2016
  • [27] Conformal field theory and graphs
    Petkova, VB
    Zuber, JB
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 627 - 632
  • [28] Superspace conformal field theory
    Quella, Thomas
    Schomerus, Volker
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
  • [29] On Conformal Field Theory of SLE(κ,ρ)
    Kalle Kytölä
    Journal of Statistical Physics, 2006, 123 : 1169 - 1181
  • [30] Irrational conformal field theory
    Halpern, M. B.
    Kiritsis, E.
    Obers, N. A.
    Clubok, K.
    Physics Reports, 265 (1-2):