Why is Boris algorithm so good?

被引:222
作者
Qin, Hong [1 ,2 ,3 ]
Zhang, Shuangxi [1 ,2 ]
Xiao, Jianyuan [1 ,2 ]
Liu, Jian [1 ,2 ]
Sun, Yajuan [4 ]
Tang, William M. [3 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Collaborat Innovat Ctr Adv Fus Energy & Plasma Sc, Hefei 230026, Anhui, Peoples R China
[3] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[4] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.4818428
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Due to its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. Despite its popularity, up to now there has been no convincing explanation why the Boris algorithm has this advantageous feature. In this paper, we provide an answer to this question. We show that the Boris algorithm conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Birdsall C., 1985, PLASMA PHYS VIA COMP, P356
[2]  
Boris JP, 1970, P 4 C NUM SIM PLASM, P3
[3]  
Buneman O., 1967, J. Comput. Phys., V1, P517, DOI [10.1016/0021-9991(67)990056-3, DOI 10.1016/0021-9991(67)990056-3, DOI 10.1016/0021-9991(67)90056-3]
[4]  
FENG K, 1986, J COMPUT MATH, V4, P279
[5]  
Feng K, 2010, SYMPLECTIC GEOMETRIC ALGORITHMS FOR HAMILTONIAN SYSTEMS, P1, DOI 10.1007/978-3-642-01777-3
[6]  
Feng K., 1984, P BEIJ S DIFF GEOM D, P42
[7]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[8]   Boris push with spatial stepping [J].
Penn, G ;
Stoltz, PH ;
Cary, JR ;
Wurtele, J .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2003, 29 (08) :1719-1722
[9]   Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields [J].
Qin, Hong ;
Guan, Xiaoyin .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[10]  
Ratiu T., 1994, INTRO MECH SYMMETRY, P289