Study of Brazilian Gasoline Quality Using Hydrogen Nuclear Magnetic Resonance (1H NMR) Spectroscopy and Chemometrics

被引:44
作者
Monteiro, Marcos R. [1 ]
Ambrozin, Alessandra R. P. [1 ]
Liao, Luciano M. [2 ]
Boffo, Elisangela F. [3 ]
Tavares, Leila A. [3 ]
Ferreira, Marcia M. C. [4 ]
Gilberto Ferreira, A. [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Ctr Caracterizacao & Desenvolvimento Mat, BR-13560971 Sao Paulo, Brazil
[2] Univ Fed Goias, Inst Quim, BR-74001970 Goiania, Go, Brazil
[3] Univ Fed Sao Carlos, Dept Quim, BR-13560605 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil
关键词
PRINCIPAL COMPONENT ANALYSIS; 2-DIMENSIONAL GAS-CHROMATOGRAPHY; MULTIVARIATE CALIBRATION; INFRARED-SPECTROSCOPY; DETECT ADULTERATIONS; STATISTICAL-ANALYSIS; COMMERCIAL GASOLINE; SCREENING ANALYSIS; FTIR SPECTROSCOPY; MASS SPECTROMETRY;
D O I
10.1021/ef800436p
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the use of hydrogen nuclear magnetic resonance (H-1 NMR) with a statistical approach for identifying gasoline adulteration by organic solvents is described. Both principal component analysis (PCA) and hierarchical cluster analysis (HCA) from NMR data of 47 commercial samples allowed the distinction between conform and nonconform samples. The 1H NMR-PCA and H-1 NMR-HCA models were evaluated through the analyses of 21 intentionally adulterated samples, which showed a tendency to meet in the nonconform group with the increase of the solvent concentration.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 44 条
[1]   Determination of motor gasoline adulteration using FTIR spectroscopy and multivariate calibration [J].
Al-Ghouti, Mohammad A. ;
Al-Degs, Yahya S. ;
Amer, Mohammad .
TALANTA, 2008, 76 (05) :1105-1112
[2]  
ANREUS EL, 1996, ANAL CHIM ACTA, V333, P157
[3]   Gasoline classification by source and type based on near infrared (NIR) spectroscopy data [J].
Balabin, Roman M. ;
Safieva, Ravilya Z. .
FUEL, 2008, 87 (07) :1096-1101
[4]   Identification of gasoline origin by physical and chemical properties and multivariate analysis [J].
Barbeira, Paulo J. S. ;
Pereira, Rita C. C. ;
Corgozinho, Camila N. C. .
ENERGY & FUELS, 2007, 21 (04) :2212-2215
[5]  
Beebe K.R., 1998, CHEMOMETRICS PRACTIC
[6]   A new application of X-ray scattering using principal component analysis - classification of vegetable oils [J].
Bortoleto, GG ;
Pataca, LCM ;
Bueno, MIMS .
ANALYTICA CHIMICA ACTA, 2005, 539 (1-2) :283-287
[7]   Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach [J].
Brudzewski, K ;
Kesik, A ;
Kolodziejczyk, K ;
Zborowska, U ;
Ulaczyk, J .
FUEL, 2006, 85 (04) :553-558
[8]   Gasoline composition determined by 1H NMR spectroscopy [J].
Burri, J ;
Crockett, R ;
Hany, R ;
Rentsch, D .
FUEL, 2004, 83 (02) :187-193
[9]   Identification and quantitation of oxygenates in gasoline ampules using Fourier transform near-infrared and Fourier transform Raman spectroscopy [J].
Choquette, SJ ;
Chesler, SN ;
Duewer, DL ;
Wang, SW ;
OHaver, TC .
ANALYTICAL CHEMISTRY, 1996, 68 (20) :3525-3533
[10]   Quantification of kerosene in gasoline by Comprehensive Two-Dimensional Gas Chromatography and N-way multivariate analysis [J].
de Godoy, Luiz Antonio F. ;
Ferreira, Ernesto Correa ;
Pedroso, Marcio Pozzobon ;
Fidelis, Carlos Henrique de V. ;
Augusto, Fabio ;
Poppi, Ronei Jesus .
ANALYTICAL LETTERS, 2008, 41 (09) :1603-1614