Formation and Characterization of Shallow Junctions in GaAs Made by Ion Implantation and ms-Range Flash Lamp Annealing

被引:5
作者
Duan, Juanmei [1 ,2 ,3 ]
Wang, Mao [1 ,3 ]
Vines, Lasse [4 ]
Boettger, Roman [1 ]
Helm, Manfred [1 ]
Zeng, Yu-Jia [2 ]
Zhou, Shengqiang [1 ]
Prucnal, Slawomir [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] Shenzhen Univ, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Tech Univ Dresden, D-01062 Dresden, Germany
[4] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, POB 1048 Blindern, N-0316 Oslo, Norway
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2019年 / 216卷 / 08期
基金
中国国家自然科学基金;
关键词
flash lamp annealing; GaAs; ion implantation; shallow junctions; N-TYPE; RAMAN-SPECTRA; GE; SEMICONDUCTORS; ELECTRONICS; PARAMETERS; SCATTERING; PHONONS; SILICON; SCALE;
D O I
10.1002/pssa.201800618
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the demand of aggressive scaling in nanoelectronics, further progress can be realized by integration of high mobility semiconductors, such as III-V compound semiconductors, with complementary metal-oxide-semiconductor (CMOS) technology. In this study, the formation of shallow n-p and p-n junctions in GaAs utilizing ion implantation of S and Zn, respectively, followed by millisecond-range flash lamp annealing (FLA) is presented. The distribution of implanted elements obtained by secondary ion mass spectrometry (SIMS) shows that the FLA process can effectively suppress the diffusion of dopants. Simultaneously, the ms-range annealing is sufficient to recrystallize the implanted layer and to activate the dopants. Formation of p-n and n-p junctions is confirmed by current-voltage characteristics. The ratio of reverse to forward current can reach up to 1.7 x 10(7) in the n-GaAs:Zn case.
引用
收藏
页数:6
相关论文
共 35 条
  • [1] [Anonymous], 2012, Dopants and Defects in Semiconductors
  • [2] DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV
    ASPNES, DE
    STUDNA, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (02) : 985 - 1009
  • [3] Barnett J., 2010, JUNCT TECHN IWJT 201, P1
  • [4] Zinc diffusion in gallium arsenide and the properties of gallium interstitials
    Bracht, H
    Brotzmann, S
    [J]. PHYSICAL REVIEW B, 2005, 71 (11):
  • [5] High active carrier concentration in n-type, thin film Ge using delta-doping
    Camacho-Aguilera, Rodolfo E.
    Cai, Yan
    Bessette, Jonathan T.
    Kimerling, Lionel C.
    Michel, Jurgen
    [J]. OPTICAL MATERIALS EXPRESS, 2012, 2 (11): : 1462 - 1469
  • [6] Surface transfer doping of semiconductors
    Chen, Wei
    Qi, Dongchen
    Gao, Xingyu
    Wee, Andrew Thye Shen
    [J]. PROGRESS IN SURFACE SCIENCE, 2009, 84 (9-10) : 279 - 321
  • [7] Origin of Fermi-level pinning at GaAs surfaces and interfaces
    Colleoni, Davide
    Miceli, Giacomo
    Pasquarello, Alfredo
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (49)
  • [8] Nanometre-scale electronics with III-V compound semiconductors
    del Alamo, Jesus A.
    [J]. NATURE, 2011, 479 (7373) : 317 - 323
  • [9] Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing
    Gao, Kun
    Prucnal, S.
    Skorupa, W.
    Helm, M.
    Zhou, Shengqiang
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (01)
  • [10] Origin and enhancement of the 1.3 μm luminescence from GaAs treated by ion-implantation and flash lamp annealing
    Gao, Kun
    Prucnal, S.
    Skorupa, W.
    Helm, M.
    Zhou, Shengqiang
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (09)