Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

被引:117
作者
Cheng, Fei [1 ]
Peng, Xiaobang [1 ]
Zhao, Peng [1 ]
Yuan, Jie [1 ]
Zhong, Chonggao [1 ]
Cheng, Yalong [1 ]
Cui, Cui [1 ]
Zhang, Shuoxin [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Yangling, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Qinling Natl Forest Ecosyst Res Stn, Yangling, Shaanxi, Peoples R China
关键词
ORGANIC-MATTER; PHOSPHATASE-ACTIVITIES; LITTER DECOMPOSITION; NITROGEN DEPOSITION; EXTRACTION METHOD; SECONDARY FOREST; SHORT-TERM; CARBON; NUTRIENTS; PHOSPHORUS;
D O I
10.1371/journal.pone.0067353
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO(2). The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil [J].
Aciego Pietri, J. C. ;
Brookes, P. C. .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (07) :1396-1405
[2]   RATIOS OF MICROBIAL BIOMASS CARBON TO TOTAL ORGANIC-CARBON IN ARABLE SOILS [J].
ANDERSON, TH ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1989, 21 (04) :471-479
[3]  
[Anonymous], 1996, J NORTHWEST FOR UNIV
[4]   Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth [J].
Aponte, Cristina ;
Maranon, Teodoro ;
Garcia, Luis V. .
BIOGEOCHEMISTRY, 2010, 101 (1-3) :77-92
[5]   Microbial response of an acid forest soil to experimental soil warming [J].
Arnold, SS ;
Fernandez, IJ ;
Rustad, LE ;
Zibilske, LM .
BIOLOGY AND FERTILITY OF SOILS, 1999, 30 (03) :239-244
[6]   Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests [J].
Ayres, Edward ;
Steltzer, Heidi ;
Berg, Sarah ;
Wallenstein, Matthew D. ;
Simmons, Breana L. ;
Wall, Diana H. .
PLOS ONE, 2009, 4 (06)
[7]   Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage [J].
Babujia, L. C. ;
Hungria, M. ;
Franchini, J. C. ;
Brookes, P. C. .
SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (12) :2174-2181
[8]   The significance of microbial biomass sulphur in soil [J].
Banerjee, MR ;
Chapman, SJ .
BIOLOGY AND FERTILITY OF SOILS, 1996, 22 (1-2) :116-125
[9]   Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest [J].
Bauhus, J ;
Pare, D ;
Cote, L .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (8-9) :1077-1089
[10]   PHOSPHORUS IN THE SOIL MICROBIAL BIOMASS [J].
BROOKES, PC ;
POWLSON, DS ;
JENKINSON, DS .
SOIL BIOLOGY & BIOCHEMISTRY, 1984, 16 (02) :169-175