POSITIVE RECURRENCE OF PIECEWISE ORNSTEIN-UHLENBECK PROCESSES AND COMMON QUADRATIC LYAPUNOV FUNCTIONS

被引:17
作者
Dieker, A. B. [1 ]
Gao, Xuefeng [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Stability; common quadratic Lyapunov function; Lyapunov function; piecewise OU process; multi-server queues; customer abandonment; Halfin-Whitt regime; phase-type distribution; STABILITY; MATRICES; CRITERIA; SYSTEMS; LIMITS; QUEUE;
D O I
10.1214/12-AAP870
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the positive recurrence of piecewise Ornstein-Uhlenbeck (OU) diffusion processes, which arise from many-server queueing systems with phase-type service requirements. These diffusion processes exhibit different behavior in two regions of the state space, corresponding to "overload" (service demand exceeds capacity) and "underload" (service capacity exceeds demand). The two regimes cause standard techniques for proving positive recurrence to fail. Using and extending the framework of common quadratic Lyapunov functions from the theory of control, we construct Lyapunov functions for the diffusion approximations corresponding to systems with and without abandonment. With these Lyapunov functions, we prove that piecewise OU processes have a unique stationary distribution.
引用
收藏
页码:1291 / 1317
页数:27
相关论文
共 30 条
[1]  
Abramowitz M, 1992, HDB MATH FUNCTIONS F
[2]  
BERMAN A., 1994, NONNEGATIVE MATRICES, V9
[3]   The boundedness of all products of a pair of matrices is undecidable [J].
Blondel, VD ;
Tsitsiklis, JN .
SYSTEMS & CONTROL LETTERS, 2000, 41 (02) :135-140
[4]   Statistical analysis of a telephone call center: A queueing-science perspective [J].
Brown, L ;
Gans, N ;
Mandelbaum, A ;
Sakov, A ;
Shen, HP ;
Zeltyn, S ;
Zhao, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :36-50
[5]  
Dai J. G., 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), P556, DOI 10.1109/INFCOM.2000.832229
[6]   MANY-SERVER DIFFUSION LIMITS FOR G/Ph/n plus GI QUEUES [J].
Dai, J. G. ;
He, Shuangchi ;
Tezcan, Tolga .
ANNALS OF APPLIED PROBABILITY, 2010, 20 (05) :1854-1890
[7]   ON POSITIVE HARRIS RECURRENCE OF MULTICLASS QUEUEING NETWORKS: A UNIFIED APPROACH VIA FLUID LIMIT MODELS [J].
Dai, J. G. .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (01) :49-77
[8]   LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS [J].
DUPUIS, P ;
WILLIAMS, RJ .
ANNALS OF PROBABILITY, 1994, 22 (02) :680-702
[9]  
Gamarnik D., 2011, MULTICLASS MULTISERV
[10]  
Gamarnik D., 2011, STEADY STATE GI GI N