Supervised Machine Learning Techniques for Quality of Transmission Assessment in Optical Networks

被引:0
作者
Mata, Javier [1 ]
de Miguel, Ignacio [1 ]
Duran, Ramon J. [1 ]
Carlos Aguado, Juan [1 ]
Merayo, Noemi [1 ]
Ruiz, Lidia [1 ]
Fernandez, Patricia [1 ]
Lorenzo, Ruben M. [1 ]
Abril, Evaristo J. [1 ]
Tomkos, Ioannis [2 ]
机构
[1] Univ Valladolid, ETSI Telecomunicac, Campus Miguel Delibes, E-47011 Valladolid, Spain
[2] Athens Informat Technol AIT Ctr, Maroussi, Greece
来源
2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON) | 2018年
关键词
machine learning; quality of transmission; lightpath; impairment-aware optical networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and compare a number of machine learning models to classify unestablished lightpaths into high or low quality of transmission (QoT) categories in impairment-aware wavelength-routed optical networks. The performance of these models is evaluated in long haul communication networks and compared to previous proposals. Results show that, especially random forests and bagging trees approaches, significantly reduce the required computing time to classify the QoT of a given lightpath, while accuracy remains around 99.9%.
引用
收藏
页数:4
相关论文
共 10 条
  • [1] Experimental Demonstration of an Impairment Aware Network Planning and Operation Tool for Transparent/Translucent Optical Networks
    Azodolmolky, Siamak
    Perello, Jordi
    Angelou, Marianna
    Agraz, Fernando
    Velasco, Luis
    Spadaro, Salvatore
    Pointurier, Yvan
    Francescon, Antonio
    Saradhi, Chava Vijaya
    Kokkinos, Panagiotis
    Varvarigos, Emmanouel
    Al Zahr, Sawsan
    Gagnaire, Maurice
    Gunkel, Matthias
    Klonidis, Dimitrios
    Tomkos, Ioannis
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (04) : 439 - 448
  • [2] A Cognitive Quality of Transmission Estimator for Core Optical Networks
    Jimenez, Tamara
    Carlos Aguado, Juan
    de Miguel, Ignacio
    Duran, Ramon J.
    Angelou, Marianna
    Merayo, Noemi
    Fernandez, Patricia
    Lorenzo, Ruben M.
    Tomkos, Ioannis
    Abril, Evaristo J.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (06) : 942 - 951
  • [3] Artificial intelligence (AI) methods in optical networks: A comprehensive survey
    Mata, Javier
    de Miguel, Ignacio
    Duran, Ramon J.
    Merayo, Noemi
    Singh, Sandeep Kumar
    Jukan, Admela
    Chamania, Mohit
    [J]. OPTICAL SWITCHING AND NETWORKING, 2018, 28 : 43 - 57
  • [4] Mata J, 2017, IEEE INT CONF BIG DA, P4795, DOI 10.1109/BigData.2017.8258545
  • [5] Musumeci F., ARXIV180307976V2CSNI
  • [6] Design of Low-Margin Optical Networks
    Pointurier, Yvan
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2017, 9 (01) : A9 - A17
  • [7] Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths
    Rottondi, Cristina
    Barletta, Luca
    Giusti, Alessandro
    Tornatore, Massimo
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (02) : A286 - A297
  • [8] Sartzetakis I., 2017, 2017 19th International Conference on Transparent Optical Networks (ICTON), P1
  • [9] Learning Process for Reducing Uncertainties on Network Parameters and Design Margins
    Seve, E.
    Pesic, J.
    Delezoide, C.
    Bigo, S.
    Pointurier, Y.
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (02) : A298 - A306
  • [10] Multi-Period Planning With Actual Physical and Traffic Conditions
    Soumplis, P.
    Christodoulopoulos, K.
    Quagliotti, M.
    Pagano, A.
    Varvarigos, E.
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (01) : A144 - A153