Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation

被引:29
作者
Rajeev [1 ]
Kushwaha, M. S. [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
关键词
Homotopy perturbation method; Taylor's series; Generalized Stefan problem; Sediment transport; Shoreline problem; Fractional derivative; MOVING BOUNDARY-PROBLEMS; ANOMALOUS DIFFUSION; RANDOM-WALKS; RELEASE; DRUG; TRANSPORT; SOLUTE;
D O I
10.1016/j.apm.2012.07.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The work presents a mathematical model describing the time fractional anomalous-diffusion process of a generalized Stefan problem which is a limit case of a shoreline problem. In this model, the governing equations include a fractional time derivative of order 0 < alpha <= 1 and variable latent heat. The approximate solution of the problem is obtained by homotopy perturbation method. The results thus obtained are compared graphically with the exact solution. A brief sensitivity study is also performed. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3589 / 3599
页数:11
相关论文
共 41 条
  • [1] Diffusional release of a dispersed solute from a spherical polymer matrix
    Abdekhodaie, MJ
    Cheng, YL
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1996, 115 (02) : 171 - 178
  • [2] [Anonymous], 2006, THEORY APPL FRACTION
  • [3] [Anonymous], J GEOPHYS RES
  • [4] Fractional dispersion, Levy motion, and the MADE tracer tests
    Benson, DA
    Schumer, R
    Meerschaert, MM
    Wheatcraft, SW
    [J]. TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) : 211 - 240
  • [5] Fractional dispersion in a sand bed river
    Bradley, D. Nathan
    Tucker, Gregory E.
    Benson, David A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2010, 115
  • [6] Self-similar evolution of semi-infinite alluvial channels with moving boundaries
    Capart, Herve
    Bellal, Mourad
    Young, Der-Liang
    [J]. JOURNAL OF SEDIMENTARY RESEARCH, 2007, 77 (1-2) : 13 - 22
  • [7] Carslaw H. S., 1987, CONDUCTION HEAT SOLI
  • [8] Crank J., 1987, FREE MOVING BOUNDARY, V2nd
  • [9] Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition
    Das, Subir
    Kumar, Rajnesh
    Gupta, Praveen Kumar
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (05): : 281 - 288
  • [10] Solution of Fractional Diffusion Equation with a Moving Boundary Condition by Variational Iteration Method and Adomian Decomposition Method
    Das, Subir
    Rajeev
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (10): : 793 - 799