Design Principles of Permanent Magnet Synchronous Machines for Parallel Hybrid or Traction Applications

被引:71
作者
Kamiev, Katteden [1 ]
Montonen, Juho [1 ]
Ragavendra, Mahendarkar Prabhakaran [2 ]
Pyrhonen, Juha [1 ]
Tapia, Juan A. [3 ,4 ]
Niemela, Markku [1 ]
机构
[1] Lappeenranta Univ Technol, Dept Elect Engn, Lappeenranta 53851, Finland
[2] Ms Lucas TVS Ltd, Madras 600004, Tamil Nadu, India
[3] Univ Concepcion, Concepcion, Chile
[4] Lappeenranta Univ Technol, Lappeenranta 53851, Finland
关键词
Inductance difference; parallel hybrid application; permanent magnet synchronous machine (PMSM); traction application; MOTOR; ARCHITECTURES; IPM;
D O I
10.1109/TIE.2012.2221117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hybrid and full electric technologies are fast emerging in vehicles and mobile working machines, where electric machines and internal combustion engines are used together to power the systems. Permanent magnet (PM) technology plays an important role here despite the high magnet prices. This paper theoretically and empirically studies the design principles of PM synchronous machines (PMSMs) for hybrid applications, where a high starting torque and a wide field weakening range are needed. Several embedded-magnet PMSM magnetic circuit topologies are considered as possible candidates. A 10-kW PMSM prototype was built and tested. Experimental results verify the theoretical considerations well.
引用
收藏
页码:4881 / 4890
页数:10
相关论文
共 25 条
[1]   Permanent-Magnet Optimization in Permanent-Magnet-Assisted Synchronous Reluctance Motor for a Wide Constant-Power Speed Range [J].
Barcaro, Massimo ;
Bianchi, Nicola ;
Magnussen, Freddy .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (06) :2495-2502
[2]   Optimal Design of Permanent Magnet Motors to Improve Field-Weakening Performances in Variable Speed Drives [J].
Chaithongsuk, Sisuda ;
Nahid-Mobarakeh, Babak ;
Caron, Jean-Paul ;
Takorabet, Noureddine ;
Meibody-Tabar, Farid .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (06) :2484-2494
[3]   The state of the art of electric, hybrid, and fuel cell vehicles [J].
Chan, C. C. .
PROCEEDINGS OF THE IEEE, 2007, 95 (04) :704-718
[4]   Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling [J].
Chan, C. C. ;
Bouscayrol, Alain ;
Chen, Keyu .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (02) :589-598
[5]   Torque Feedforward Control Technique for Permanent-Magnet Synchronous Motors [J].
Cheng, Bing ;
Tesch, Tod R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (03) :969-974
[6]  
Chin YK, 2003, IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, P1035, DOI 10.1109/IEMDC.2003.1210362
[7]  
Cho J.-H., 2009, P 3DTV C, P1
[8]   Analysis and Design Techniques Applied to Hybrid Vehicle Drive Machines-Assessment of Alternative IPM and Induction Motor Topologies [J].
Dorrell, David G. ;
Knight, Andrew M. ;
Evans, Lyndon ;
Popescu, Mircea .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (10) :3690-3699
[9]   Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations [J].
Emadi, A ;
Rajashekara, K ;
Williamson, SS ;
Lukic, SM .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 54 (03) :763-770
[10]  
Finken T., 2010, 2010 Emobility - Electrical Power Train, P1