Electronic structure of octagonal boron nitride nanotubes

被引:2
作者
Takahashi, Lauren [1 ]
Nakagawa, Tessui [2 ]
Takahashi, Keisuke [3 ,4 ]
机构
[1] Cent Ward, Sapporo, Hokkaido 064, Japan
[2] Univ Ryukyus, Fac Sci, 1 Senbaru, Nishihara, Okinawa 9030213, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat CMI2, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] Hokkaido Univ, Grad Sch Engn, N-13,W-8, Sapporo, Hokkaido 0608628, Japan
基金
日本科学技术振兴机构;
关键词
boron nitride nanotube; defect; hydrogen adsorption; octagonal boron nitride; HYDROGEN STORAGE; CARBON NANOTUBES; GRAPHENE; STABILITY; JUNCTIONS;
D O I
10.1002/qua.25542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of an octagonal lattice configuration on a boron nitride nanotube is explored using first principle calculations. Calculations show that the formational energy of an octagonal boron nitride nanotube (o-BNNT) is an exothermic reaction. Boron and nitrogen atoms within an o-BNNT have an average of 2.88 electrons and 9.09 electrons, respectively, indicating ionic-like bonding. In addition, the electronic structure of the octagonal boron nitride nanotube shows semiconductive properties, while h-BNNT is reported to be an insulator. Additional o-BNNTs with varying diameters are calculated where the results suggest that the diameter has an effect on the binding energy and bandgap of the o-BNNT. The defect sites of the o-BNNT are reactive against hydrogen where a boron defect is particularly reactive. Thus, this work suggests that physical and chemical properties of a boron nitride nanotube can be tailored and tuned by controlling the lattice configuration of the nanotube.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[2]   Boron nitride nanotubes-reinforced glass composites [J].
Bansal, NP ;
Hurst, JB ;
Choi, SR .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (01) :388-390
[3]   STABILITY AND BAND-GAP CONSTANCY OF BORON-NITRIDE NANOTUBES [J].
BLASE, X ;
RUBIO, A ;
LOUIE, SG ;
COHEN, ML .
EUROPHYSICS LETTERS, 1994, 28 (05) :335-340
[4]   BORON-NITRIDE NANOTUBES [J].
CHOPRA, NG ;
LUYKEN, RJ ;
CHERREY, K ;
CRESPI, VH ;
COHEN, ML ;
LOUIE, SG ;
ZETTL, A .
SCIENCE, 1995, 269 (5226) :966-967
[5]   Cytocompatibility, Interactions, and Uptake of Polyethyleneimine-Coated Boron Nitride Nanotubes by Living Cells: Confirmation of Their Potential for Biomedical Applications [J].
Ciofani, Gianni ;
Raffa, Vittoria ;
Menciassi, Arianna ;
Cuschieri, Alfred .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (04) :850-858
[6]   Density functional theory study of ultrasmall diameter (2,2) boron nitride, silicon carbide, and carbon nanotubes [J].
Fakhrabad, Davoud Vahedi ;
Movlarooy, Tayebeh ;
Shahtahmassebi, Nasser .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (05) :1027-1032
[7]   Boron nitride nanotubes [J].
Golberg, Dmitri ;
Bando, Yoshio ;
Tang, Chengchun ;
Zhi, Chunyi .
ADVANCED MATERIALS, 2007, 19 (18) :2413-2432
[8]   Boron Nitride Nanotubes and Nanosheets [J].
Golberg, Dmitri ;
Bando, Yoshio ;
Huang, Yang ;
Terao, Takeshi ;
Mitome, Masanori ;
Tang, Chengchun ;
Zhi, Chunyi .
ACS NANO, 2010, 4 (06) :2979-2993
[9]   The structure of junctions between carbon nanotubes and graphene shells [J].
Harris, Peter J. F. ;
Suarez-Martinez, Irene ;
Marks, Nigel A. .
NANOSCALE, 2016, 8 (45) :18849-18854
[10]   A fast and robust algorithm for Bader decomposition of charge density [J].
Henkelman, Graeme ;
Arnaldsson, Andri ;
Jonsson, Hannes .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 36 (03) :354-360