A Flexible Framework for FMI-Based Co-Simulation of Human-Centred Cyber-Physical Systems

被引:5
|
作者
Palmieri, Maurizio [1 ,2 ]
Bernardeschi, Cinzia [2 ]
Masci, Paolo [3 ,4 ]
机构
[1] Univ Florence, Dipartimento Ingn Informaz, Florence, Italy
[2] Univ Pisa, Dipartimento Ingn Informaz, Pisa, Italy
[3] HASLab INESC TEC, Braga, Portugal
[4] Univ Minho, Braga, Portugal
来源
SOFTWARE TECHNOLOGIES: APPLICATIONS AND FOUNDATIONS | 2018年 / 11176卷
关键词
COSIMULATION;
D O I
10.1007/978-3-030-04771-9_2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents our on-going work on developing a flexible framework for formal co-simulation of human-centred cyber-physical systems. The framework builds on and extends an existing prototyping toolkit, adding novel functionalities for automatic generation of user interface prototypes equipped with a standard FMI-2 co-simulation interface. The framework is developed in JavaScript, and uses a flexible templating mechanism for converting stand-alone device prototypes into Functional Mockup Units (FMUs) capable of exchanging commands and data with any FMI-compliant co-simulation engine. Two concrete examples are presented to demonstrate the capabilities of the framework.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [1] A framework for FMI-based co-simulation of human-machine interfaces
    Palmieri, Maurizio
    Bernardeschi, Cinzia
    Masci, Paolo
    SOFTWARE AND SYSTEMS MODELING, 2020, 19 (03): : 601 - 623
  • [2] Runtime Verification for FMI-Based Co-simulation
    Temperekidis, Anastasios
    Kekatos, Nikolaos
    Katsaros, Panagiotis
    RUNTIME VERIFICATION (RV 2022), 2022, 13498 : 304 - 313
  • [3] Integration of UML models in FMI-Based co-simulation
    Guermazi, Sahar
    Dhouib, Saadia
    Cuccuru, Arnaud
    Letavernier, Camille
    Gerard, Sebastien
    2016 SYMPOSIUM ON THEORY OF MODELING AND SIMULATION (TMS-DEVS), 2016,
  • [4] A Co-Simulation Interface for Cyber-Physical Systems
    Zhang, Yu
    Dong, Yunwei
    Feng, Wenlong
    Huang, Mengxing
    2016 13TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS) - PROCEEDINGS, 2016, : 176 - 181
  • [5] Hybrid fire testing using FMI-based co-simulation
    Abbiati, G.
    Bas, E. E.
    Gomes, C.
    Larsen, P. G.
    FIRE SAFETY JOURNAL, 2023, 139
  • [6] Formalization and co-simulation of attacks on cyber-physical systems
    Bernardeschi, Cinzia
    Domenici, Andrea
    Palmieri, Maurizio
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2020, 16 (01) : 63 - 77
  • [7] Formalization and co-simulation of attacks on cyber-physical systems
    Cinzia Bernardeschi
    Andrea Domenici
    Maurizio Palmieri
    Journal of Computer Virology and Hacking Techniques, 2020, 16 : 63 - 77
  • [8] Co-simulation of Cyber-Physical Systems using HLA
    Nagele, Thomas
    Hooman, Jozef
    2017 IEEE 7TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE IEEE CCWC-2017, 2017,
  • [9] Barriers for Adopting FMI-based Co-Simulation in Industrial MBSE Processes
    Cederbladh, Johan
    Reale, Anna
    Bergsten, Andreas
    Mikelov, Richard
    Cicchetti, Antonio
    2023 ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS COMPANION, MODELS-C, 2023, : 510 - 519
  • [10] Towards Scalable FMI-based Co-simulation of Wind Energy Systems Using PowerFactory
    van der Meer, Arjen A.
    Bhandia, Rishabh
    Widl, Edmund
    Heussen, Kai
    Steinbrink, Cornelius
    Chodura, Przemyslaw
    Strasser, Thomas I.
    Palensky, Peter
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,