Some intricacies of the momentum operator in quantum mechanics

被引:0
作者
Roy, Utpal [1 ]
Ghosh, Suranjana [1 ]
Bhattacharya, Kaushik [2 ]
机构
[1] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[2] Univ Nacl Autonoma Mexico, Inst Ciencias, Mexico City 04510, DF, Mexico
来源
REVISTA MEXICANA DE FISICA E | 2008年 / 54卷 / 02期
关键词
Momentum operator; quantum mechanics;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
In quantum mechanics textbooks, the momentum operator is defined in Cartesian coordinates and the form of the momentum operator in spherical polar coordinates is rarely discussed. Consequently one always generalizes the Cartesian prescription to other coordinates and falls into a trap. In this work, we introduce the difficulties one faces when the question of the momentum operator in general curvilinear coordinates arises. We have tried to elucidate the points related to the definition of the momentum operator, taking spherical polar coordinates as our specimen coordinate system and proposing an elementary method in which we can ascertain the form of the momentum operator in general coordinate systems.
引用
收藏
页码:160 / 167
页数:8
相关论文
共 10 条
[1]   Self-adjoint extensions of operators and the teaching of quantum mechanics [J].
Bonneau, G ;
Faraut, J ;
Valent, G .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) :322-331
[2]   POINT TRANSFORMATIONS IN QUANTUM MECHANICS [J].
DEWITT, BS .
PHYSICAL REVIEW, 1952, 85 (04) :653-661
[3]  
Dirac P.A.M., 1958, The Principles of Quantum Mechanics
[4]   QUANTIZATION AND INDEPENDENT COORDINATES [J].
ESSEN, H .
AMERICAN JOURNAL OF PHYSICS, 1978, 46 (10) :983-988
[5]  
FLUGGE S, 1971, PRACTICAL QUANTUM ME, V1
[6]  
GRADSHTEYN IS, TABLE INTEGRALS SERI, P955
[7]   Quantum-mechanically correct form of Hamiltonian function for conservative systems [J].
Podolsky, B .
PHYSICAL REVIEW, 1928, 32 (05) :0812-0816
[8]  
SAKURAI JJ, 1999, MODERN QUANTUM MECH
[9]  
SCHIFF LI, QUANTUM MECH
[10]  
Shankar R., 1994, Principles of Quantum Mechanics, V3rd