Scattering on periodic metric graphs

被引:7
作者
Korotyaev, Evgeny [1 ]
Saburova, Natalia [2 ]
机构
[1] St Petersburg State Univ, Dept Math Anal, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
[2] Northern Arctic Fed Univ, Dept Math Anal Algebra & Geometry, Severnaya Dvina Emb 17, Arkhangelsk 163002, Russia
关键词
Direct integral; scattering; Fredholm determinant; metric Laplacian; Schrodinger operators; periodic metric graph; DISCRETE SCHRODINGER-OPERATORS; SELF-ADJOINT EXTENSIONS; SPECTRAL PROPERTIES; LAPLACIAN; POTENTIALS; THEOREM;
D O I
10.1142/S0129055X20500245
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman-Krein identity.
引用
收藏
页数:51
相关论文
共 49 条
  • [1] Inverse Scattering for Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    [J]. ANNALES HENRI POINCARE, 2018, 19 (11): : 3397 - 3455
  • [2] Spectral Properties of Schrodinger Operators on Perturbed Lattices
    Ando, Kazunori
    Isozaki, Hiroshi
    Morioka, Hisashi
    [J]. ANNALES HENRI POINCARE, 2016, 17 (08): : 2103 - 2171
  • [3] Inverse Scattering Theory for Discrete Schrodinger Operators on the Hexagonal Lattice
    Ando, Kazunori
    [J]. ANNALES HENRI POINCARE, 2013, 14 (02): : 347 - 383
  • [4] [Anonymous], 1988, ANN DISCRETE MATH
  • [5] Berkolaiko G., 2013, Mathematical Surveys and Monographs, V186
  • [6] BIRMAN MS, 1962, DOKL AKAD NAUK SSSR+, V144, P475
  • [7] Spectra of self-adjoint extensions and applications to solvable schrodinger operators
    Bruening, Jochen
    Geyler, Vladimir
    Pankrashkin, Konstantin
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (01) : 1 - 70
  • [8] The spectrum of the continuous Laplacian on a graph
    Cattaneo, C
    [J]. MONATSHEFTE FUR MATHEMATIK, 1997, 124 (03): : 215 - 235
  • [9] Chung FRK, 1997, Spectral graph theory, DOI DOI 10.1090/CBMS/092
  • [10] Cvetkovic D., 1995, Spectra of Graphs, Vthird