A new butterfly-shaped attractor of Lorenz-like system

被引:48
|
作者
Liu, CX [1 ]
Liu, L
Liu, T
Li, P
机构
[1] Xian Jiaotong Univ, Xian 710049, Peoples R China
[2] SW Jiaotong Univ, Chengdu 610031, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.09.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this letter a new butterfly-shaped chaotic attractor is reported. Some basic dynamical properties, such as Poincare mapping, Lyapunov exponents, fractal dimension, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied. Furthermore, we clarify that the chaotic attractors of the system is a compound structure obtained by merging together two simple attractors through a mirror operation. (c) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1196 / 1203
页数:8
相关论文
共 50 条
  • [31] Octonionic Lorenz-like condition
    Tanisli, Murat
    Jancewicz, Bernard
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (02): : 165 - 174
  • [32] BUTTERFLY-SHAPED MARK - REPLY
    METZKER, A
    SHAMIR, R
    PEDIATRICS, 1991, 87 (06) : 956 - 957
  • [33] A Unified Lorenz-Like System and Its Tracking Control
    Li Chun-Lai
    Zhao Yi-Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (03) : 317 - 324
  • [34] Symmetry-Break in a Minimal Lorenz-Like System
    Lucarini, Valerio
    Fraedrich, Klaus
    CHAOTIC SYSTEMS: THEORY AND APPLICATIONS, 2010, : 170 - +
  • [35] Octonionic Lorenz-like condition
    MURAT TANIŞLI
    BERNARD JANCEWICZ
    Pramana, 2012, 78 : 165 - 174
  • [36] A Unified Lorenz-Like System and Its Tracking Control
    李春来
    赵益波
    CommunicationsinTheoreticalPhysics, 2015, 63 (03) : 317 - 324
  • [37] Boundary estimation and cascade control for a Lorenz-like system
    Li, Yin
    Zang, Aibin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 11976 - 11992
  • [38] BUTTERFLY-SHAPED DYSTROPHY OF MACULA
    STARZYCKA, M
    BRYK, E
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 1976, 169 (04) : 454 - 458
  • [39] Butterfly-shaped dystrophy of the macula
    Behrendt, S
    Wiechens, B
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 1996, 209 (01) : 51 - 52
  • [40] Hamiltonian Lorenz-like models
    Fedele, Francesco
    Chandre, Cristel
    Horvat, Martin
    Zagar, Nedjeljka
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472