A new butterfly-shaped attractor of Lorenz-like system

被引:48
|
作者
Liu, CX [1 ]
Liu, L
Liu, T
Li, P
机构
[1] Xian Jiaotong Univ, Xian 710049, Peoples R China
[2] SW Jiaotong Univ, Chengdu 610031, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.09.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this letter a new butterfly-shaped chaotic attractor is reported. Some basic dynamical properties, such as Poincare mapping, Lyapunov exponents, fractal dimension, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied. Furthermore, we clarify that the chaotic attractors of the system is a compound structure obtained by merging together two simple attractors through a mirror operation. (c) 2004 Published by Elsevier Ltd.
引用
收藏
页码:1196 / 1203
页数:8
相关论文
共 50 条
  • [11] A new chaotic system and beyond:: The generalized Lorenz-like system
    Lü, JH
    Chen, GR
    Cheng, DZ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05): : 1507 - 1537
  • [12] Bifurcation analysis of a new Lorenz-like chaotic system
    Mello, L. F.
    Messias, M.
    Braga, D. C.
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1244 - 1255
  • [13] Exponential synchronization of a new Lorenz-like attractor with uncertain parameters via single input
    Yang, Chi-Ching
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) : 6490 - 6497
  • [14] A simple butterfly-shaped chaotic system
    Lingyun Li
    Degui Kong
    Zhijun Chai
    Yunxia Wang
    The European Physical Journal B, 2022, 95
  • [15] A simple butterfly-shaped chaotic system
    Li, Lingyun
    Kong, Degui
    Chai, Zhijun
    Wang, Yunxia
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (07):
  • [16] Nonlinear analysis in a Lorenz-like system
    Dias, Fabio Scalco
    Mello, Luis Fernando
    Zhang, Jian-Gang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3491 - 3500
  • [17] Hopf Bifurcation Analysis and Control of a New Lorenz-like System
    Zhang Zhonghua
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1597 - 1601
  • [18] Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System
    Li, You
    Zhao, Ming
    Geng, Fengjie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [19] Fresh Look at Lorenz-like System
    Nguyen, Hang T. T.
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Kuznetsov, Ilya E.
    Gorlov, Vladimir A.
    Klinskikh, Alexander F.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2255 - 2259
  • [20] Preservation of a two-wing Lorenz-like attractor with stable equilibria
    Ontanon-Garcia, L. J.
    Campos-Canton, E.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10): : 2867 - 2880