Wavelet estimation for operator fractional Brownian motion

被引:30
|
作者
Abry, Patrice [1 ,2 ]
Didier, Gustavo [3 ]
机构
[1] CNRS, Phys Lab, 46 Allee Italie, F-69364 Lyon 7, France
[2] Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 7, France
[3] Tulane Univ, Dept Math, 6823 St Charles Ave, New Orleans, LA 70118 USA
关键词
operator fractional Brownian motion; operator self-similarity; wavelets; LONG-RANGE DEPENDENCE; GAUSSIAN TIME-SERIES; LOCAL WHITTLE ESTIMATION; CENTRAL-LIMIT-THEOREM; INTEGRATED-PROCESSES; MEMORY PARAMETER; RANDOM VECTORS; SEMIPARAMETRIC ESTIMATION; WEAK-CONVERGENCE; QUEUING-NETWORKS;
D O I
10.3150/15-BEJ790
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator fractional Brownian motion (OFBM) is the natural vector-valued extension of the univariate fractional Brownian motion. Instead of a scalar parameter, the law of an OFBM scales according to a Hurst matrix that affects every component of the process. In this paper, we develop the wavelet analysis of OFBM, as well as a new estimator for the Hurst matrix of bivariate OFBM. For OFBM, the univariate-inspired approach of analyzing the entry-wise behavior of the wavelet spectrum as a function of the (wavelet) scales is fraught with difficulties stemming from mixtures of power laws. Instead we consider the evolution along scales of the eigenstructure of the wavelet spectrum. This is shown to yield consistent and asymptotically normal estimators of the Hurst eigenvalues, and also of the eigenvectors under assumptions. A simulation study is included to demonstrate the good performance of the estimators under finite sample sizes.
引用
收藏
页码:895 / 928
页数:34
相关论文
共 50 条
  • [11] WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 592 - 604
  • [12] Estimation of the drift of fractional Brownian motion
    Es-Sebaiy, Khalifa
    Ouassou, Idir
    Ouknine, Youssef
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (14) : 1647 - 1653
  • [13] Fractional Brownian motion and parameter estimation
    Janak, Josef
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 359 - 364
  • [14] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [15] WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION
    FLANDRIN, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 910 - 917
  • [16] Wavelet entropy and fractional Brownian motion time series
    Perez, D. G.
    Zunino, L.
    Garavaglia, M.
    Rosso, O. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 282 - 288
  • [17] On wavelet analysis of the nth order fractional Brownian motion
    Kortas, Hedi
    Dhifaoui, Zouhaier
    Ben Ammou, Samir
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (03): : 251 - 277
  • [18] Wavelet-based estimations in fractional Brownian motion
    D'Attellis, CE
    Hirchoren, GA
    LATIN AMERICAN APPLIED RESEARCH, 1999, 29 (3-4) : 221 - 225
  • [19] On wavelet analysis of the nth order fractional Brownian motion
    Hedi Kortas
    Zouhaier Dhifaoui
    Samir Ben Ammou
    Statistical Methods & Applications, 2012, 21 : 251 - 277
  • [20] Estimation in models driven by fractional Brownian motion
    Berzin, Corinne
    Leon, Jose R.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 191 - 213