Wavelet estimation for operator fractional Brownian motion

被引:30
|
作者
Abry, Patrice [1 ,2 ]
Didier, Gustavo [3 ]
机构
[1] CNRS, Phys Lab, 46 Allee Italie, F-69364 Lyon 7, France
[2] Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 7, France
[3] Tulane Univ, Dept Math, 6823 St Charles Ave, New Orleans, LA 70118 USA
关键词
operator fractional Brownian motion; operator self-similarity; wavelets; LONG-RANGE DEPENDENCE; GAUSSIAN TIME-SERIES; LOCAL WHITTLE ESTIMATION; CENTRAL-LIMIT-THEOREM; INTEGRATED-PROCESSES; MEMORY PARAMETER; RANDOM VECTORS; SEMIPARAMETRIC ESTIMATION; WEAK-CONVERGENCE; QUEUING-NETWORKS;
D O I
10.3150/15-BEJ790
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator fractional Brownian motion (OFBM) is the natural vector-valued extension of the univariate fractional Brownian motion. Instead of a scalar parameter, the law of an OFBM scales according to a Hurst matrix that affects every component of the process. In this paper, we develop the wavelet analysis of OFBM, as well as a new estimator for the Hurst matrix of bivariate OFBM. For OFBM, the univariate-inspired approach of analyzing the entry-wise behavior of the wavelet spectrum as a function of the (wavelet) scales is fraught with difficulties stemming from mixtures of power laws. Instead we consider the evolution along scales of the eigenstructure of the wavelet spectrum. This is shown to yield consistent and asymptotically normal estimators of the Hurst eigenvalues, and also of the eigenvectors under assumptions. A simulation study is included to demonstrate the good performance of the estimators under finite sample sizes.
引用
收藏
页码:895 / 928
页数:34
相关论文
共 50 条
  • [1] Continuous wavelet estimation for multivariate fractional Brownian motion
    Hmood, Munaf Y.
    Hamza, Amjad H.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2022, 18 (03) : 633 - 641
  • [2] Wavelet estimation of fractional Brownian motion embedded in a noisy environment
    Zhang, L
    Bao, P
    Wu, XL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 2194 - 2200
  • [3] Tempered fractional Brownian motion: Wavelet estimation, modeling and testing
    Boniece, B. Cooper
    Didier, Gustavo
    Sabzikar, Farzad
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 : 461 - 509
  • [4] Wavelet eigenvalue regression for n-variate operator fractional Brownian motion
    Abry, Patrice
    Didier, Gustavo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 75 - 104
  • [5] Wavelet synthesis of fractional Brownian motion
    Hu, G
    Zhu, SH
    Xie, B
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 349 - 352
  • [6] Wavelet Packets of Fractional Brownian Motion: Asymptotic Analysis and Spectrum Estimation
    Atto, Abdourrahmane Mahamane
    Pastor, Dominique
    Mercier, Gregoire
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4741 - 4753
  • [7] Parameter estimation of fractional Brownian motion processes: Wavelet packets based
    Sembiring, J
    Akizuki, K
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 77 - 81
  • [8] TEMPERED FRACTIONAL BROWNIAN MOTION: WAVELET ESTIMATION AND MODELING OF TURBULENCE IN GEOPHYSICAL FLOWS
    Boniece, B. C.
    Sabzikar, F.
    Didier, G.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 174 - 178
  • [9] The Moduli of Continuity for Operator Fractional Brownian Motion
    Wang, Wensheng
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (03) : 2097 - 2120
  • [10] ON THE WAVELET TRANSFORM OF FRACTIONAL BROWNIAN-MOTION
    RAMANATHAN, J
    ZEITOUNI, O
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) : 1156 - 1158