High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals

被引:161
作者
Rinnerbauer, Veronika [1 ]
Yeng, Yi Xiang [1 ,2 ]
Chan, Walker R. [1 ,2 ]
Senkevich, Jay J. [2 ]
Joannopoulos, John D. [1 ,2 ]
Soljacic, Marin [1 ,2 ]
Celanovic, Ivan [2 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
TUNGSTEN EMITTERS; RADIATION; FABRICATION; GRATINGS;
D O I
10.1364/OE.21.011482
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present the results of extensive characterization of selective emitters at high temperatures, including thermal emission measurements and thermal stability testing at 1000 degrees C for 1h and 900 degrees C for up to 144h. The selective emitters were fabricated as 2D photonic crystals (PhCs) on polycrystalline tantalum (Ta), targeting large-area applications in solid-state heat-to-electricity conversion. We characterized spectral emission as a function of temperature, observing very good selectivity of the emission as compared to flat Ta, with the emission of the PhC approaching the blackbody limit below the target cut-off wavelength of 2 mu m, and a steep cut-off to low emission at longer wavelengths. In addition, we study the use of a thin, conformal layer (20 nm) of HfO2 deposited by atomic layer deposition (ALD) as a surface protective coating, and confirm experimentally that it acts as a diffusion inhibitor and thermal barrier coating, and prevents the formation of Ta carbide on the surface. Furthermore, we tested the thermal stability of the nanostructured emitters and their optical properties before and after annealing, observing no degradation even after 144h (6 days) at 900 degrees C, which demonstrates the suitability of these selective emitters for high-temperature applications. (C) 2013 Optical Society of America
引用
收藏
页码:11482 / 11491
页数:10
相关论文
共 25 条
[1]   Solar thermophotovoltaic converters based on tungsten emitters [J].
Andreev, V. M. ;
Vlasov, A. S. ;
Khvostikov, V. P. ;
Khvostikova, O. A. ;
Gazaryan, P. Y. ;
Sorokina, S. V. ;
Sadchikov, N. A. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (03) :298-303
[2]   Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications [J].
Araghchini, M. ;
Yeng, Y. X. ;
Jovanovic, N. ;
Bermel, P. ;
Kolodziejski, L. A. ;
Soljacic, M. ;
Celanovic, I. ;
Joannopoulos, J. D. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (06)
[3]   Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability [J].
Arpin, Kevin A. ;
Losego, Mark D. ;
Braun, Paul V. .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4783-4788
[4]   LARGE ELECTROMAGNETIC STOP BANDS IN METALLODIELECTRIC PHOTONIC CRYSTALS [J].
BROWN, ER ;
MCMAHON, OB .
APPLIED PHYSICS LETTERS, 1995, 67 (15) :2138-2140
[5]   Two-dimensional tungsten photonic crystals as selective thermal emitters [J].
Celanovic, Ivan ;
Jovanovic, Natalija ;
Kassakian, John .
APPLIED PHYSICS LETTERS, 2008, 92 (19)
[6]   Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics [J].
Chan, Walker R. ;
Bermel, Peter ;
Pilawa-Podgurski, Robert C. N. ;
Marton, Christopher H. ;
Jensen, Klavs F. ;
Senkevich, Jay J. ;
Joannopoulos, John D. ;
Soljacic, Marin ;
Celanovic, Ivan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (14) :5309-5314
[7]   Modification of Planck blackbody radiation by photonic band-gap structures [J].
Cornelius, CM ;
Dowling, JP .
PHYSICAL REVIEW A, 1999, 59 (06) :4736-4746
[8]  
Crowley CJ, 2005, AIP CONF PROC, V746, P601
[9]   Large omnidirectional band gaps in metallodielectric photonic crystals [J].
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD .
PHYSICAL REVIEW B, 1996, 54 (16) :11245-11251
[10]   All-metallic three-dimensional photonic crystals with a large infrared bandgap [J].
Fleming, JG ;
Lin, SY ;
El-Kady, I ;
Biswas, R ;
Ho, KM .
NATURE, 2002, 417 (6884) :52-55