Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrodinger equation

被引:0
作者
Yamane, Hideshi [1 ]
机构
[1] Kwansei Gakuin Univ, Dept Math Sci, Sanda 6691337, Japan
关键词
Discrete nonlinear Schrodinger equation; Ablowitz-Ladik model; asymptotics; inverse scattering transform; nonlinear steepest descent; DIFFERENTIAL-DIFFERENCE EQUATIONS; LONG-TIME ASYMPTOTICS; TODA LATTICE; INFINITY;
D O I
10.1007/s11464-013-0279-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrodinger equation of Ablowitz-Ladik. The leading term is a sum of two terms that oscillate with decay of order t (-1/2).
引用
收藏
页码:1077 / 1083
页数:7
相关论文
共 17 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]   Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Prinari, Barbara .
INVERSE PROBLEMS, 2007, 23 (04) :1711-1758
[3]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[4]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[5]   DECAY OF CONTINUOUS SPECTRUM FOR SOLUTIONS OF KORTEWEG-DEVRIES EQUATION [J].
ABLOWITZ, MJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1277-1284
[6]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[7]  
Deift P.A., 1993, Important Developments in Soliton Theory, P181
[8]  
Deift PA., 1998, ORTHOGONAL POLYNOMIA
[9]   ON THE LONG-TIME BEHAVIOR OF THE DOUBLY INFINITE TODA LATTICE UNDER INITIAL DATA DECAYING AT INFINITY [J].
KAMVISSIS, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :479-519
[10]   Long-time asymptotics for the Toda lattice in the soliton region [J].
Krueger, Helge ;
Teschl, Gerald .
MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (03) :585-602