Solution of linearized Ginzburg-Landau problem for mesoscopic superconductors by conformal mapping

被引:1
|
作者
Pereira, Paulo J. [1 ]
Moshchalkov, Victor V. [1 ]
Chibotaru, Liviu F.
机构
[1] Katholieke Univ Leuven, INPAC Inst Nanoscale Phys & Chem, B-3001 Louvain, Belgium
关键词
ANTIVORTICES; NUCLEATION;
D O I
10.1088/1742-6596/410/1/012162
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a new method for the solution of linearized Ginzburg-Landau problem for mesoscopic superconducting nanostructures of arbitrary shapes in applied magnetic field. The method is based on the conformal mapping of the analytical solution for the disk and uses a specially designed superconducting gauge for the vector potential corresponding to the magnetic field. As a demonstration of the methods accuracy, we calculate the distribution of the order parameter in superconducting regular polygons and compare the obtained solutions with the available numerical results. We further consider an example of irregular polygon and show the evolution of the vortex patterns in function of the geometry of samples boundary. The obtained results will be compared with available experimental data on mesoscopic and nanoscopic superconductors.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors
    Pereira, Paulo J.
    Moshchalkov, Victor V.
    Chibotaru, Liviu F.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [2] Coupled mesoscopic superconductors: Ginzburg-Landau theory
    Baelus, BJ
    Yampolskii, SV
    Peeters, FM
    PHYSICAL REVIEW B, 2002, 66 (02):
  • [3] Ginzburg-Landau description of confinement and quantization effects in mesoscopic superconductors
    Chibotaru, LF
    Ceulemans, A
    Morelle, M
    Teniers, G
    Carballeira, C
    Moshchalkov, VV
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
  • [4] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158
  • [5] SOLUTION TO GINZBURG-LANDAU EQUATIONS FOR INHOMOGENEOUS SUPERCONDUCTORS BY NONLINEAR OPTIMIZATION
    GARNER, J
    BENEDEK, R
    PHYSICAL REVIEW B, 1990, 42 (10): : 6027 - 6034
  • [6] Ginzburg-Landau theory of noncentrosymmetric superconductors
    Mukherjee, Soumya P.
    Mandal, Sudhansu S.
    PHYSICAL REVIEW B, 2008, 77 (01)
  • [7] Rotating superconductors: Ginzburg-Landau equations
    Capellmann, H
    EUROPEAN PHYSICAL JOURNAL B, 2002, 25 (01): : 25 - 30
  • [8] Nonlocal Ginzburg-Landau theory for superconductors
    Koyama, T.
    Machida, M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 484 : 100 - 103
  • [9] An extended Ginzburg-Landau description for superconductors
    Di Grezia, E
    Esposito, S
    Naddeo, A
    Lectures on the Physics of Highly Correlated Electron Systems IX, 2005, 789 : 279 - 288
  • [10] Rotating superconductors: Ginzburg-Landau equations
    H. Capellmann
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 25 : 25 - 30