Solitons in PT-symmetric potential with competing nonlinearity

被引:71
作者
Khare, Avinash [2 ]
Al-Marzoug, S. M. [1 ,3 ]
Bahlouli, Hocine [1 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
[2] Indian Inst Sci Educ & Res, Pune 411021, Maharashtra, India
[3] Saudi Ctr Theoret Phys, Dhahran 31261, Saudi Arabia
关键词
PT-symmetric; Solitons; Competing nonlinearities; WAVE-GUIDE;
D O I
10.1016/j.physleta.2012.09.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrodinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2880 / 2886
页数:7
相关论文
共 21 条
[1]  
Agrawal G P., 2012, Nonlinear Fiber Optics
[2]   Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation [J].
Aleksic, N. B. ;
Pavlovic, G. ;
Aleksic, B. N. ;
Skarka, V. .
ACTA PHYSICA POLONICA A, 2007, 112 (05) :941-947
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]   SOLITON LASER - A COMPUTATIONAL 2-CAVITY MODEL [J].
BERG, P ;
IF, F ;
CHRISTIANSEN, PL ;
SKOVGAARD, O .
PHYSICAL REVIEW A, 1987, 35 (10) :4167-4174
[5]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[6]   Strong collapse turbulence in a quintic nonlinear Schrodinger equation [J].
Chung, Yeojin ;
Lushnikov, Pavel M. .
PHYSICAL REVIEW E, 2011, 84 (03)
[7]   SELF-TRAPPED PROPAGATION IN THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION - A VARIATIONAL APPROACH [J].
DEANGELIS, C .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (03) :818-821
[8]   All-optical switching in a two-channel waveguide with cubic-quintic nonlinearity [J].
Driben, R ;
Malomed, BA ;
Chu, PL .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (11) :2455-2466
[9]   Theory of coupled optical PT-symmetric structures [J].
El-Ganainy, R. ;
Makris, K. G. ;
Christodoulides, D. N. ;
Musslimani, Ziad H. .
OPTICS LETTERS, 2007, 32 (17) :2632-2634
[10]   BROKEN SYMMETRIES [J].
GOLDSTONE, J ;
SALAM, A ;
WEINBERG, S .
PHYSICAL REVIEW, 1962, 127 (03) :965-+