Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals

被引:14
作者
Bourgeade, A
Saut, O
机构
[1] Univ Toulouse 3, CNRS, INSA, UMR 5640,MIP, F-31062 Toulouse 4, France
[2] CEA, CESTA, F-33114 Le Barp, France
关键词
nonlinear optics; harmonic generation; quantum description of light and matter; nonlinear optical crystal; numerical schemes;
D O I
10.1016/j.jcp.2005.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two numerical schemes are developed for solutions of the bidimensional Maxwell-Bloch equations in nonlinear optical crystals. The Maxwell-Bloch model was recently extended [C. Besse, B. Bidegaray, A. Bourgeade, P. Degond, O. Saut, A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals: all application to KDP, M2AN Math. Model. Numer. Anal. 38 (2) (2004) 321-344] to treat anisotropic materials like nonlinear crystals. This semi-classical model seems to be adequate to describe the wave-matter interaction of ultrashort pulses in nonlinear crystals [A. Bourgeade, O. Saut, Comparison between the Maxwell-Bloch and two nonlinear maxwell models for ultrashort pulses propagation in nonlinear crystals, submitted (2004)] as it is closer to the physics than most macroscopic models. A bidimensional finite-difference-time-domain scheme, adapted from Yee [IEEE Trans. Antennas Propag. AP-14 (1966) 302-307], was already developed in [O. Saut, Bidimensional study of the Maxwell-Bloch model in it nonlinear crystal, submitted (2004)]. This scheme yields very expensive computations. In this paper, we present two numerical schemes much more efficient with their relative advantages and drawbacks. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:823 / 843
页数:21
相关论文
共 20 条
[1]   NUMERICAL-CALCULATION OF OPTICAL FREQUENCY-CONVERSION PROCESSES - A NEW APPROACH [J].
BAKKER, HJ ;
PLANKEN, PCM ;
MULLER, HG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1989, 6 (09) :1665-1672
[2]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[3]   A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals:: An application to KDP [J].
Besse, C ;
Bidégaray-Fesquet, B ;
Bourgeade, A ;
Degond, P ;
Saut, O .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02) :321-344
[4]   Time discretizations for Maxwell-Bloch equations [J].
Bidégaray, B .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :284-300
[5]   Introducing physical relaxation terms in Bloch equations [J].
Bidégaray, B ;
Bourgeade, A ;
Reignier, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :603-613
[6]   Computational modeling of second-harmonic generation by solution of full-wave vector Maxwell equations [J].
Bourgeade, A ;
Freysz, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (02) :226-234
[7]  
BOURGEADE A, 2004, UNPUB COMP MAXWELLBL
[8]  
Boyd R. W., 2003, NONLINEAR OPTICS
[9]  
DITMIRE DET, 1995, J OPT SOC AM, V13, P649
[10]  
Liu QH, 1997, MICROW OPT TECHN LET, V15, P158, DOI 10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO