Development of Gamma-Ray Transition-Edge-Sensor Microcalorimeters on Thick Membranes

被引:5
作者
Iyomoto, Naoko [1 ]
Yoshimine, Ikumi [1 ]
Shuto, Yuki [1 ]
Kuroiwa, Takehiro [1 ]
Maehata, Keisuke [1 ]
Hayashi, Tasuku [2 ]
Muramatsu, Haruka [2 ]
Nagayoshi, Kenichiro [2 ]
Mitsuda, Kazuhisa [2 ]
Takano, Akira [1 ]
Yoshimoto, Shota [1 ]
Kurume, Yuta [1 ]
Ishibashi, Kenji [1 ]
机构
[1] Kyushu Univ, Nishi Ku, 744,Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] ISAS JAXA, Tyuo Ku, 3-1-1,Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
关键词
Gamma-ray; Transition-edge-sensor; Microcalorimeter; Spectroscopy;
D O I
10.1007/s10909-018-2100-3
中图分类号
O59 [应用物理学];
学科分类号
摘要
We developed transition-edge-sensor microcalorimeters to detect gamma rays of energy up to a few MeV. To develop devices that have mechanical robustness and fast response together with reasonable thermal isolation, we fabricated devices with thick (17 mu m or 9.5 mu m) membranes using silicon-on-insulator wafers. Here, we report the results for one of each device. The thermal conductances of the 17-mu m-thick-membrane device and the 9.5-mu m-thick-membrane device were measured to be 84 nW/K and 52 nW/K at their transition temperatures of 162 mK and 202 mK, respectively. The thermal conductances are 20-30 times and 6-9 times larger than those of our thin-membrane devices, when compared at the same temperatures. We irradiated the devices with gamma rays from a Cs-137 source. About 30% of the accumulated pulses are signals from the absorbers, while the remaining are signals from the silicon substrates. The energy resolution of the 662-keV photo peak for the 17-mu m-thick-membrane device is 2.2 keV, whereas the baseline energy resolution is 2.3 keV. The energy resolution is several times worse than the design value. One reason for the degradation of the energy resolution is the low-frequency noise of the mechanical cooler, and the other reason is the thermal noise arising from the Compton-scattering events in the substrate.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 50 条
[41]   Ultra-high Resolution Alpha Particle Spectrometry with Transition-Edge Sensor Microcalorimeters [J].
M. Croce ;
M. Bacrania ;
E. Bond ;
D. Dry ;
W. A. Moody ;
M. Rabin ;
D. Bennett ;
G. Hilton ;
R. Horansky ;
V. Kotsubo ;
D. Schmidt ;
J. Ullom ;
L. Vale ;
R. Cantor .
Journal of Low Temperature Physics, 2012, 167 :955-960
[42]   Towards a cryogenic imaging array of transition edge X-ray microcalorimeters [J].
Bruijn, MP ;
Tiest, WB ;
Hoevers, HFC ;
van der Kuur, J ;
Mels, WA ;
de Korte, PAJ .
X-RAY OPTICS, INSTRUMENTS, AND MISSIONS III, 2000, 4012 :145-153
[43]   High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters [J].
N. A. Wakeham ;
J. S. Adams ;
S. R. Bandler ;
S. Beaumont ;
M. P. Chang ;
J. A. Chervenak ;
A. M. Datesman ;
M. E. Eckart ;
F. M. Finkbeiner ;
J. Y. Ha ;
R. Hummatov ;
R. L. Kelley ;
C. A. Kilbourne ;
A. R. Miniussi ;
F. S. Porter ;
J. E. Sadleir ;
K. Sakai ;
S. J. Smith ;
E. J. Wassell .
Journal of Low Temperature Physics, 2020, 200 :192-199
[44]   High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters [J].
Wakeham, N. A. ;
Adams, J. S. ;
Bandler, S. R. ;
Beaumont, S. ;
Chang, M. P. ;
Chervenak, J. A. ;
Datesman, A. M. ;
Eckart, M. E. ;
Finkbeiner, F. M. ;
Ha, J. Y. ;
Hummatov, R. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
Miniussi, A. R. ;
Porter, F. S. ;
Sadleir, J. E. ;
Sakai, K. ;
Smith, S. J. ;
Wassell, E. J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 200 (5-6) :192-199
[45]   High Count-Rate Studies of Small-Pitch Transition-Edge Sensor X-ray Microcalorimeters [J].
S. J. Lee ;
S. R. Bandler ;
S. E. Busch ;
J. S. Adams ;
J. A. Chervenak ;
M. E. Eckart ;
A. J. Ewin ;
F. M. Finkbeiner ;
R. L. Kelley ;
C. A. Kilbourne ;
J.-P. Porst ;
F. S. Porter ;
J. E. Sadleir ;
S. J. Smith ;
E. J. Wassel .
Journal of Low Temperature Physics, 2014, 176 :597-603
[46]   Quantitative analysis with the transition edge sensor microcalorimeter X-ray detector [J].
Jach, Terrence ;
Ritchie, Nicholas ;
Ullom, Joel ;
Beall, James A. .
POWDER DIFFRACTION, 2007, 22 (02) :138-141
[47]   High Count-Rate Studies of Small-Pitch Transition-Edge Sensor X-ray Microcalorimeters [J].
Lee, S. J. ;
Bandler, S. R. ;
Busch, S. E. ;
Adams, J. S. ;
Chervenak, J. A. ;
Eckart, M. E. ;
Ewin, A. J. ;
Finkbeiner, F. M. ;
Kelley, R. L. ;
Kilbourne, C. A. ;
Porst, J. -P. ;
Porter, F. S. ;
Sadleir, J. E. ;
Smith, S. J. ;
Wassel, E. J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 176 (3-4) :597-603
[48]   Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors [J].
Smith, Stephen James ;
Bandler, Simon R. ;
Brekosky, Regis P. ;
Brown, Ari-David ;
Chervenak, Jay A. ;
Eckart, Megan E. ;
Figueroa-Feliciano, Encetali ;
Finkbeiner, Fred M. ;
Kelley, Richard L. ;
Kilbourne, Caroline A. ;
Porter, Frederick Scott ;
Sadleir, John E. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :451-455
[49]   Using a gamma-ray spectrometer for soil moisture monitoring: development of the the gamma Soil Moisture Sensor (gSMS) [J].
van der Veeke, Steven ;
Koomans, Ronald ;
Limburg, Han .
PROCEEDINGS OF 2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (METROAGRIFOR), 2020, :185-190
[50]   Investigation of Surface Roughness Effect on Transition Edge Sensor Microcalorimeters Using Multilayer Readout Wiring [J].
Kuromaru, G. ;
Kuwabara, K. ;
Miyazaki, N. ;
Suzuki, S. ;
Hosoya, S. ;
Koizumi, Y. ;
Ohashi, T. ;
Ishisaki, Y. ;
Ezoe, Y. ;
Yamada, S. ;
Mitsuda, K. ;
Hidaka, M. ;
Satoh, T. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) :38-44