Nontrivial Solutions for Schrodinger Equation with Local Super-Quadratic Conditions

被引:63
作者
Tang, Xianhua [1 ]
Lin, Xiaoyan [2 ]
Yu, Jianshe [3 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510005, Guangdong, Peoples R China
关键词
Schrodinger equation; Superlinear; Asymptotically linear; Local super-quadratic conditions; MULTIPLE SOLUTIONS; ELLIPTIC PROBLEMS; GROUND-STATES;
D O I
10.1007/s10884-018-9662-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to studying the semilinear Schrodinger equation - u + V(x) u = f (x, u), x. RN, u. H1(RN), where V. C(RN, R) is sign- changing and either periodic or coercive and f. C(RN xR, R) is subcritical and local super- linear (i. e. allowed to be super- linear at some x. RN and asymptotically linear at other x. RN). Instead of the common condition that lim| t|.8 t 0 f (x, s) ds t2 = 8 uniformly in x. RN, we use a local super- quadratic condition lim| t|.8 t 0 f (x, s) ds t2 =8 a. e. x. G for some domain G. RN to show the existence of nontrivial solutions for the above problem.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 31 条
[1]  
Alves C.O., 1996, Electron. J. Differ. Equ., V7, P1
[2]   Nonlinear perturbations of a periodic elliptic problem with critical growth [J].
Alves, CO ;
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) :133-146
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[7]   Bound states for semilinear Schrodinger equations with sign-changing potential [J].
Ding, Yanheng ;
Szulkin, Andrzej .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) :397-419
[8]   Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms [J].
Ding, YH ;
Lee, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :137-163
[9]   Multiple solutions for a class of nonlinear Schrodinger equations [J].
Ding, YH ;
Luan, SX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) :423-457
[10]  
Edmunds D.E., 1987, Spectral Theory and Differential Operators