Singularity and blow-up estimates via Liouville-type theorems for Hardy-H,non parabolic equations

被引:15
作者
Quoc Hung Phan [1 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
Hardy-Henon parabolic equation; Liouville-type theorem; Universal bounds; A priori estimate; Decay estimate; Blow-up; UNIVERSAL BOUNDS; SUPERLINEAR PROBLEMS; POSITIVE SOLUTIONS; GLOBAL-SOLUTIONS; DECAY; NONEXISTENCE; BEHAVIOR;
D O I
10.1007/s00028-013-0185-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hardy-H,non parabolic equation with p > 1 and . We establish the space-time singularity and decay estimates, and Liouville-type theorems for radial and nonradial solutions. As applications, we study universal and a priori bound of global solutions as well as the blow-up estimates for the corresponding initial-boundary value problem.
引用
收藏
页码:411 / 442
页数:32
相关论文
共 45 条
[41]   Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions [J].
Payne, L. E. ;
Philippin, G. A. .
APPLICABLE ANALYSIS, 2012, 91 (12) :2245-2256
[42]   Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation [J].
Wu, S. T. ;
Tsai, L. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (02) :243-264
[43]   Steady States, Global Existence and Blow-up for Fourth-Order Semilinear Parabolic Equations of Cahn-Hilliard Type [J].
Alvarez-Caudevilla, Pablo ;
Galaktionov, Victor A. .
ADVANCED NONLINEAR STUDIES, 2012, 12 (02) :315-361
[44]   The extinction versus the blow-up: Global and non-global existence of solutions of source types of degenerate parabolic equations with a singular absorption [J].
Nguyen Anh Dao ;
Diaz, Jesus Ildefonso .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (10) :6764-6804
[45]   Liouville type theorems and gradient estimates for nonlinear heat equations along ancient K-super Ricci flow via reduced geometry [J].
Ha Than Dung ;
Nguyen Tien Manh ;
Nguyen Dang Tuyen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)