Singularity and blow-up estimates via Liouville-type theorems for Hardy-H,non parabolic equations

被引:15
作者
Quoc Hung Phan [1 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
Hardy-Henon parabolic equation; Liouville-type theorem; Universal bounds; A priori estimate; Decay estimate; Blow-up; UNIVERSAL BOUNDS; SUPERLINEAR PROBLEMS; POSITIVE SOLUTIONS; GLOBAL-SOLUTIONS; DECAY; NONEXISTENCE; BEHAVIOR;
D O I
10.1007/s00028-013-0185-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hardy-H,non parabolic equation with p > 1 and . We establish the space-time singularity and decay estimates, and Liouville-type theorems for radial and nonradial solutions. As applications, we study universal and a priori bound of global solutions as well as the blow-up estimates for the corresponding initial-boundary value problem.
引用
收藏
页码:411 / 442
页数:32
相关论文
共 45 条
[31]   New blow-up conditions to p-Laplace type nonlinear parabolic equations under nonlinear boundary conditions [J].
Chung, Soon-Yeong ;
Hwang, Jaeho .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) :6086-6100
[32]   Blow-up analysis in degenerate parabolic systems coupled via norm-type reactions [J].
Liu, Bingchen ;
Zhang, Changcheng .
APPLICABLE ANALYSIS, 2016, 95 (03) :668-689
[33]   Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type [J].
Koleva, Miglena ;
Vulkov, Lubin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) :414-434
[34]   Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type [J].
Korpusov, M. O. .
IZVESTIYA MATHEMATICS, 2015, 79 (05) :955-1012
[35]   Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators [J].
V. A. Galaktionov ;
S. I. Pohozaev .
Journal of Evolution Equations, 2006, 6 :45-69
[36]   Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators [J].
Galaktionov, VA ;
Pohozaev, SI .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (01) :45-69
[37]   Blow-up solutions to nonlinear parabolic equations with non-autonomous reactions under the mixed boundary conditions [J].
Chung, Soon-Yeong ;
Hwang, Jaeho .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) :5560-5573
[38]   LIOUVILLE TYPE THEOREMS, A PRIORI ESTIMATES AND EXISTENCE OF SOLUTIONS FOR SUB-CRITICAL ORDER LANE-EMDEN-HARDY EQUATIONS [J].
Dai, Wei ;
Peng, Shaolong ;
Qin, Guolin .
JOURNAL D ANALYSE MATHEMATIQUE, 2022, 146 (02) :673-718
[39]   Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy-Henon type equations in Rn [J].
Chen, Wenxiong ;
Dai, Wei ;
Qin, Guolin .
MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (04)
[40]   Properties of non-simultaneous blow-up in heat equations coupled via different localized sources [J].
Liu, Bingchen ;
Li, Fengjie .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) :3403-3411