Singularity and blow-up estimates via Liouville-type theorems for Hardy-H,non parabolic equations

被引:15
作者
Quoc Hung Phan [1 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
Hardy-Henon parabolic equation; Liouville-type theorem; Universal bounds; A priori estimate; Decay estimate; Blow-up; UNIVERSAL BOUNDS; SUPERLINEAR PROBLEMS; POSITIVE SOLUTIONS; GLOBAL-SOLUTIONS; DECAY; NONEXISTENCE; BEHAVIOR;
D O I
10.1007/s00028-013-0185-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hardy-H,non parabolic equation with p > 1 and . We establish the space-time singularity and decay estimates, and Liouville-type theorems for radial and nonradial solutions. As applications, we study universal and a priori bound of global solutions as well as the blow-up estimates for the corresponding initial-boundary value problem.
引用
收藏
页码:411 / 442
页数:32
相关论文
共 45 条
[21]   Global existence and blow-up solutions and blow-up estimates for a non-local quasilinear degenerate parabolic system [J].
Zhang, Rui ;
Yang, Zuodong .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :267-282
[22]   Asymptotic blow-up analysis for singular Liouville type equations with applications [J].
Bartolucci, D. ;
Tarantello, G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (07) :3887-3931
[23]   Liouville-type theorems for a quasilinear elliptic equation of the Hénon-type [J].
Quoc Hung Phan ;
Anh Tuan Duong .
Nonlinear Differential Equations and Applications NoDEA, 2015, 22 :1817-1829
[24]   A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Souplet, Philippe .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (04) :321-349
[25]   Blow-up rates for degenerate parabolic equations coupled via equation and boundary [J].
Xiang, Zhaoyin ;
Chen, Qiong ;
Mu, Chunlai .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (03) :261-271
[26]   Sharp criteria of global existence and blow-up for a type of nonlinear parabolic equations [J].
Jiang, Yi ;
Zhang, Yongle .
APPLIED MATHEMATICS LETTERS, 2013, 26 (11) :1041-1047
[27]   On a class of nonlocal parabolic equations of Kirchhoff type: Nonexistence of global solutions and blow-up [J].
Sert, Ugur ;
Shmarev, Sergey .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) :8674-8700
[28]   Blow-up estimates for system of heat equations coupled via nonlinear boundary flux [J].
Zhao, LZ ;
Zheng, SN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (02) :251-259
[29]   Global solutions and blow-up time estimates for a class of parabolic equations under nonlinear boundary conditions [J].
Zhang Wenqian ;
Zhang Lingling .
2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, :5916-5921
[30]   POINTWISE BOUNDS AND BLOW-UP FOR SYSTEMS OF SEMILINEAR ELLIPTIC INEQUALITIES AT AN ISOLATED SINGULARITY VIA NONLINEAR POTENTIAL ESTIMATES [J].
Ghergu, Marius ;
Taliaferro, Steven D. ;
Verbitsky, Igor E. .
JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02) :799-840