Quantity quantiles linear regression

被引:2
作者
Radaelli, Paolo [1 ]
Zenga, Michele [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Metodi Quantitat Sci Econ & Aziendal, I-20126 Milan, Italy
关键词
quantile; quantity quantile; quantile regression; quantity quantile linear regression; loss function;
D O I
10.1007/s10260-007-0071-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the definition of the theta th sample quantile as the solution to a minimization problem introduced by Koenker and Bassett (Econometrica 46(1):33-50, 1978) can be easily extended to obtain an analogous definition for the theta th sample quantity quantile widely investigated and applied in the Italian literature. The key point is the use of the first-moment distribution of the variable instead of its distribution function. By means of this definition we introduce a linear regression model for quantity quantiles and analyze some properties of the residuals. In Sect. 4 we show a brief application of the methodology proposed.
引用
收藏
页码:455 / 469
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1998, A History of Mathematical Statistics from 1750 to 1930
[2]  
BANCA I, 2006, STAT B S
[3]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[4]  
BERTI P, 1999, ENCY STAT SCI UPDATE, V3, P101
[5]  
BOWLEY A, 1972, FY EDGEWORTHS CONTRI
[6]  
DELAPLACE M, 1966, CELESTIAL MECH, V2
[7]  
EFRON B, 1991, STAT SINICA, V1, P93
[8]   EXPECTILES AND M-QUANTILES ARE QUANTILES [J].
JONES, MC .
STATISTICS & PROBABILITY LETTERS, 1994, 20 (02) :149-153
[9]  
Kleiber C., 2003, Statistical Size Distributions in Economics and Actuarial Sciences, DOI DOI 10.1002/0471457175
[10]   Quantile regression [J].
Das, Kiranmoy ;
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2019, 16 (06) :451-452