Sensor Fusion Operators for Multimodal 2D Object Detection

被引:2
作者
Pasandi, Morteza Mousa [1 ]
Liu, Tianran [1 ]
Massoud, Yahya [1 ]
Laganiere, Robert [1 ]
机构
[1] Univ Ottawa, Ottawa, ON, Canada
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I | 2022年 / 13598卷
关键词
Convolutional neural networks; Sensor fusion; Fusion operators; Object detection; Autonomous driving;
D O I
10.1007/978-3-031-20713-6_14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Autonomous driving requires effective capabilities to detect road objects in different environmental conditions. One promising solution to improve perception is to leverage multi-sensor fusion. This approach aims to combine various sensor streams in order to best integrate the information coming from the different sensors. Fusion operators are used to combine features from different modalities inside convolutional neural network architectures. In this study, we provide a framework for evaluating early fusion operators using different 2D object detection architectures. This comparative study includes element-wise addition and multiplication, feature concatenation, multi-modal factorized bilinear pooling, and bilaterally-guided fusion. We report quantitative results of the performance as well as an analysis of computational costs of these operators on different architectures.
引用
收藏
页码:184 / 195
页数:12
相关论文
共 19 条
  • [1] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [2] 3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) : 1259 - 1272
  • [3] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [4] Chen XL, 2017, Arxiv, DOI arXiv:1702.02138
  • [5] From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection
    Deng, Jiajun
    Zhou, Wengang
    Zhang, Yanyong
    Li, Houqiang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4722 - 4734
  • [6] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Ku J, 2018, IEEE INT C INT ROBOT, P5750, DOI 10.1109/IROS.2018.8594049
  • [9] Multi-Task Multi-Sensor Fusion for 3D Object Detection
    Liang, Ming
    Yang, Bin
    Chen, Yun
    Hu, Rui
    Urtasun, Raquel
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7337 - 7345
  • [10] Deep Continuous Fusion for Multi-sensor 3D Object Detection
    Liang, Ming
    Yang, Bin
    Wang, Shenlong
    Urtasun, Raquel
    [J]. COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 663 - 678