Engineering a de Novo Transport Tunnel

被引:89
作者
Brezovsky, Jan [1 ,2 ]
Babkova, Petra [1 ,2 ]
Degtjarik, Oksana [3 ,4 ]
Fortova, Andrea [1 ,2 ]
Gora, Artur [1 ,2 ,7 ]
Iermak, Iuliia [3 ,4 ]
Rezacova, Pavlina [5 ,6 ]
Dvorak, Pavel [1 ,2 ]
Smatanova, Ivana Kuta [3 ,4 ]
Prokop, Zbynek [1 ,2 ]
Chaloupkova, Radka [1 ,2 ]
Damborsky, Jiri [1 ,2 ]
机构
[1] Masaryk Univ, Fac Sci, Loschmidt Labs, Dept Expt Biol, Kamenice 5-A13, Brno 62500, Czech Republic
[2] Masaryk Univ, Fac Sci, Res Ctr Tox Cpds Environm RECETOX, Kamenice 5-A13, Brno 62500, Czech Republic
[3] Univ South Bohemia Ceske Budejovice, Fac Sci, Branisovska 1760, Ceske Budejovice 37005, Czech Republic
[4] ASCR, Ctr Nanobiol & Struct Biol, Zamek 136, Nove Hrady 37333, Czech Republic
[5] ASCR, Inst Organ Chem & Biochem, Vvi, Flemingovo Nam 2, Prague 16610 6, Czech Republic
[6] ASCR, Inst Mol Genet, Vvi, Videnska 1083, Prague 14220 4, Czech Republic
[7] Silesian Tech Univ, Biotechnol Ctr, Ul Krzywoustego 8, PL-44100 Gliwice, Poland
关键词
transport tunnel; protein engineering; protein design; activity; specificity; substrate inhibition; stability; substrate binding; product release; water dynamics; MOLECULAR-DYNAMICS SIMULATIONS; HALOALKANE DEHALOGENASE LINB; PARTICLE MESH EWALD; PRODUCT RELEASE; FORCE-FIELD; MECHANISM; PARAMETERS; MODEL; DISPLACEMENTS; VISUALIZATION;
D O I
10.1021/acscatal.6b02081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transport of ligands between buried active sites and bulk solvent is a key step in the catalytic cycle of many enzymes. The absence of evolutionary optimized transport tunnels is an important barrier limiting the efficiency of biocatalysts prepared by computational design. Creating a structurally defined and functional "hole" into the protein represents an engineering challenge. Here we describe the computational design and directed evolution of a de novo transport tunnel in haloalkane dehalogenase. Mutants with a blocked native tunnel and newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date (k(cat) = 57 s(-1) with 1,2-dibromoethane at 37 degrees C and pH 8.6). Crystallographic analysis and molecular dynamics simulations confirmed the successful introduction of a structurally defined and functional transport tunnel. Our study demonstrates that, whereas we can open the transport tunnels with reasonable proficiency, we cannot accurately predict the effects of such change on the catalytic properties. We propose that one way to increase efficiency of an enzyme is the direct its substrates and products into spatially distinct tunnels. The results clearly show the benefits of enzymes with de novo transport tunnels, and we anticipate that this engineering strategy will facilitate the creation of a wide range of useful biocatalysts.
引用
收藏
页码:7597 / 7610
页数:14
相关论文
共 89 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[3]   Structural elements in IGP synthase exclude water to optimize ammonia transfer [J].
Amaro, RE ;
Myers, RS ;
Davisson, VJ ;
Luthey-Schulten, ZA .
BIOPHYSICAL JOURNAL, 2005, 89 (01) :475-487
[4]  
[Anonymous], PYMOL MOL GRAPH SYST
[5]  
[Anonymous], 1986, Statist. Sci.
[6]   Analysis of catalytic residues in enzyme active sites [J].
Bartlett, GJ ;
Porter, CT ;
Borkakoti, N ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (01) :105-121
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB [J].
Biedermannova, Lada ;
Prokop, Zbynek ;
Gora, Artur ;
Chovancova, Eva ;
Kovacs, Mihaly ;
Damborsky, Jiri ;
Wade, Rebecca C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (34) :29062-29074
[9]   Precision is essential for efficient catalysis in an evolved Kemp eliminase [J].
Blomberg, Rebecca ;
Kries, Hajo ;
Pinkas, Daniel M. ;
Mittl, Peer R. E. ;
Gruetter, Markus G. ;
Privett, Heidi K. ;
Mayo, Stephen L. ;
Hilvert, Donald .
NATURE, 2013, 503 (7476) :418-+
[10]   Engineering the third wave of biocatalysis [J].
Bornscheuer, U. T. ;
Huisman, G. W. ;
Kazlauskas, R. J. ;
Lutz, S. ;
Moore, J. C. ;
Robins, K. .
NATURE, 2012, 485 (7397) :185-194