THE POSSIBLE SHAPES OF NUMERICAL RANGES

被引:27
作者
Helton, J. William [1 ]
Spitkovsky, I. M. [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
OPERATORS AND MATRICES | 2012年 / 6卷 / 03期
基金
美国国家科学基金会;
关键词
Numerical range; linear matrix inequalities;
D O I
10.7153/oam-06-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Which convex subsets of C are the numerical range W(A) of some matrix A? This paper gives a precise characterization of these sets. In addition to this we show that for any A there exists a symmetric B of the same size such that W(A) = W(B) thereby settling an open question from [2].
引用
收藏
页码:607 / 611
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1991, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[2]  
Ben-Tal A., 2001, Lectures on modern convex optimization, V2
[3]   MULTIPLICITIES, BOUNDARY POINTS, AND JOINT NUMERICAL RANGES [J].
Cheung, Wai-Shun ;
Liu, Xuhua ;
Tam, Tin-Yau .
OPERATORS AND MATRICES, 2011, 5 (01) :41-52
[4]  
Gustafson K. E., 1997, NUMERICAL RANGE FIEL
[5]   Linear matrix inequality representation of sets [J].
Helton, J. William ;
Vinnikov, Victor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (05) :654-674
[6]  
Henrion D, 2010, ELECTRON J LINEAR AL, V20, P322
[7]  
KIPPENHAFIN R., 2008, LINEAR MULTILINEAR A, V56, P185
[8]  
Kippenhahn R., 1951, Math. Nachr., V6, P193
[9]  
Rockafellar R. T., 1970, Convex Analysis
[10]  
Rostalski P., 2010, Rend Mat Appl VII Ser, V30, P285