Powers of tridiagonal matrices with constant diagonals

被引:15
作者
Gutierrez-Gutierrez, Jesus [1 ,2 ]
机构
[1] CEIT, E-20018 San Sebastian, Spain
[2] Tecnun Univ Navarra, E-20018 San Sebastian, Spain
关键词
Tridiagonal matrices; Eigenvalues; Eigenvectors; Jordan's form; Chebyshev polynomials;
D O I
10.1016/j.amc.2008.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a general expression for the entries of the qth power (q is an element of N) of the n x n complex tridiagonal matrix tridiag(n) (a(1); a(0); a(-1)) for all n is an element of N, in terms of the Chebyshev polynomials of the second kind. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 7 条
[1]   Positive integer powers of certain tridiagonal matrices [J].
Gutierrez-Gutierrez, Jesus .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :133-140
[2]   On computing of arbitrary positive integer powers for one type of even order skew-symmetric tridiagonal matrices with eigenvalues on imaginary axis - I [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :997-1000
[3]   On computing of arbitrary positive integer powers for one type of odd order skew-symmetric tridiagonal matrices with eigenvalues on imaginary axis-II [J].
Rimas, Jonas .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :872-878
[4]   On computing of arbitrary positive integer powers for one type of odd order skew-symmetric tridiagonal matrices with eigenvalues on imaginary axis - I [J].
Rimas, Jonas .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) :1378-1380
[5]   On computing of arbitrary positive integer powers for one type of even order skew-symmetric tridiagonal matrices with eigenvalues on imaginary axis-II [J].
Rimas, Jonas .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) :1120-1125
[6]   ON THE EIGENVALUE PROBLEM FOR TOEPLITZ BAND MATRICES [J].
TRENCH, WF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 64 (JAN) :199-214
[7]   Some phenomenon of the powers of certain tridiagonal and asymmetric matrices [J].
Witula, Roman ;
Slota, Damian .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) :348-359