Adaptive synchronization and anti-synchronization of TSUCS and La unified chaotic systems with unknown parameters

被引:15
作者
Tirandaz, Hamed [1 ]
Hajipour, Ahmad [1 ]
机构
[1] Hakim Sabzevari Univ, Mechatron Fac, Sabzevar, Iran
来源
OPTIK | 2017年 / 130卷
关键词
TSUCS unified system; Lu unified system; Chaos synchronization; Anti-synchronization;
D O I
10.1016/j.ijleo.2016.10.093
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper is devoted to adaptive synchronization and anti-synchronization between the TSUCS and the Lu, two unified chaotic systems. It is assumed that the parameters of the both systems are unknown. A designed controller based on Lyapanov candidate theorem is introduced for adaptive synchronization/anti-synchronization of two different unified chaotic systems and is used for adjusting estimation parameters until the measurable errors converge to zero. The stability evaluation and convergence analysis is carried out by Lyapanov stability theorem. Finally, some numerical simulations are presented to assess the behavior of the synchronization procedure and to verify the effectiveness of the theoretical analysis. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:543 / 549
页数:7
相关论文
共 18 条
[1]   Synchronization of Unified Chaotic Systems Using Sliding Mode Controller [J].
Hou, Yi-You ;
Liau, Ben-Yi ;
Chen, Hsin-Chieh .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[2]  
Hu C., 2014, STABILIZATION SYNCHR, V2014
[3]   Projective synchronization of a new hyperchaotic Lorenz system [J].
Jia, Qiang .
PHYSICS LETTERS A, 2007, 370 (01) :40-45
[4]   Integral-observer-based chaos synchronization [J].
Jiang, GP ;
Zheng, WX ;
Tang, WKS ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (02) :110-114
[5]   Phase synchronization in small-world networks of chaotic oscillators [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 :73-79
[6]   Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling [J].
Li Chun -Lai ;
Zhang Mei ;
Zhou Feng ;
Yang Xuan-Bing .
OPTIK, 2016, 127 (05) :2830-2836
[7]   Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior [J].
Lu, Ling ;
Li, Chengren ;
Chen, Liansong ;
Wei, Linling .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) :2843-2849
[8]   Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system [J].
Ma, Jun ;
Li, Fan ;
Huang, Long ;
Jin, Wu-Yin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3770-3785
[9]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[10]  
Park JH, 2005, INT J NONLIN SCI NUM, V6, P201