Embeddings of Bornological Universes

被引:15
作者
Beer, Gerald [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 04期
关键词
Bornology; Embedding; Coercive function; One-point extension; Tychonoff Embedding Theorem;
D O I
10.1007/s11228-007-0068-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bornological universe < X, tau, B) is a topological space < X, tau > equipped with a bornology B, that is, a cover of X that is hereditary and is closed under finite unions. In this paper, we give three different sets of necessary and sufficient conditions for the universe to be both topologically and bornologically embeddable in R(Y) for some index set Y. When this is possible, Y can be chosen to be a family of continuous coercive functions on X.
引用
收藏
页码:477 / 488
页数:12
相关论文
共 26 条
[1]  
[Anonymous], COMMENT MATH U CAROL
[2]  
[Anonymous], REND SEM MAT U PADOV
[3]  
[Anonymous], GEN TOPOLOGY
[4]  
[Anonymous], BORNOLOGIES FUNCTION
[5]   QUANTITATIVE STABILITY OF VARIATIONAL SYSTEMS .1. THE EPIGRAPHICAL DISTANCE [J].
ATTOUCH, H ;
WETS, RJB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :695-729
[6]   THE TOPOLOGY OF THE RHO-HAUSDORFF DISTANCE [J].
ATTOUCH, H ;
LUCCHETTI, R ;
WETS, RJB .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :303-320
[7]   Quasi-concave functions and convex convergence to infinity [J].
Beer, G .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (01) :81-94
[8]   On convergence to infinity [J].
Beer, G .
MONATSHEFTE FUR MATHEMATIK, 2000, 129 (04) :267-280
[9]   On metric boundedness structures [J].
Beer, G .
SET-VALUED ANALYSIS, 1999, 7 (03) :195-208
[10]  
BEER G, 2007, J CONVEX AN IN PRESS