Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation

被引:28
作者
Ngai, K. L. [1 ]
Capaccioli, S. [1 ,2 ]
Paciaroni, A. [3 ]
机构
[1] CNR IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[3] Univ Perugia, Dipartimento Fis, Via Pascoli 1, I-06123 Perugia, Italy
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2017年 / 1861卷 / 01期
关键词
Hydrated protein dynamics; Neutron scattering; Protein dynamical transition; Secondary relaxation of hydration water; Myoglobin; Lysozyme; Bovine serum albumin; Bio-protectants; BOVINE SERUM-ALBUMIN; GLASS-TRANSITION TEMPERATURE; DIELECTRIC-SPECTROSCOPY; AQUEOUS-SOLUTIONS; MOLECULE-DYNAMICS; WATER MIXTURES; SECONDARY RELAXATION; SUPERCOOLED LIQUIDS; NEUTRON-SCATTERING; JOHARI-GOLDSTEIN;
D O I
10.1016/j.bbagen.2016.04.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The properties of the three dynamic processes, alpha-relaxation, nu-relaxation, and caged dynamics in aqueous mixtures and hydrated proteins are analogous to corresponding processes found in van der Waals and polymeric glass-formers apart from minor differences. Methods: Collection of various experimental data enables us to characterize the structural alpha-relaxation of the protein coupled to hydration water (HW), the secondary or nu-relaxation of HW, and the caged HW process. Results: From the T-dependence of the nu-relaxation time of hydrated myoglobin, lysozyme, and bovine serum albumin, we obtain Ton at which it enters the experimental time windows of MOssbauer and neutron scattering spectroscopies, coinciding with protein dynamical transition (PDT) temperature Td. However, for all systems considered, the alpha-relaxation time at Ton or Td is many orders of magnitude longer. The other step change of the mean-square-displacement (MSD) at Tg_alpha originates from the coupling of the nearly constant loss (NCL) of caged HW to density. The coupling of the NCL to density is further demonstrated by another step change at the secondary glass temperature Tg_beta in two bio-protectants, trehalose and sucrose. Conclusions: The structural alpha-relaxation plays no role in PDT. Since PDT is simply due to the v-relaxation of HW, the term PDT is a misnomer. NCL of caged dynamics is coupled to density and show transitions at lower temperature, Tg_beta and Tg_alpha. General significance: The so-called protein dynamical transition (PDT) of hydrated proteins is not caused by the structural alpha-relaxation of the protein but by the secondary nu-relaxation of hydration water. "This article is part of a Special Issue entitled "Science for" Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazfi and Dr. Federica Migliardo". (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3553 / 3563
页数:11
相关论文
共 90 条
[81]  
Sibik J., 2015, C IRMMW THZ 2015 40
[82]  
Sibik J., 2015, PHILOS MAG
[83]   Thermal Decoupling of Molecular-Relaxation Processes from the Vibrational Density of States at Terahertz Frequencies in Supercooled Hydrogen-Bonded Liquids [J].
Sibik, Juraj ;
Elliott, Stephen R. ;
Zeitler, J. Axel .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (11) :1968-1972
[84]   Observation of constant loss in fast relaxation spectra of polymers - art. no. 172004 [J].
Sokolov, AP ;
Kisliuk, A ;
Novikov, VN ;
Ngai, K .
PHYSICAL REVIEW B, 2001, 63 (17)
[85]  
SUTTER EJ, 1971, J PHYS CHEM-US, V75, P1826
[86]   Relaxation processes in supercooled confined water and implications for protein dynamics [J].
Swenson, Jan ;
Jansson, Helen ;
Bergman, Rikard .
PHYSICAL REVIEW LETTERS, 2006, 96 (24)
[87]   Principal components of the protein dynamical transition [J].
Tournier, AL ;
Smith, JC .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[88]   Dynamics of water in supercooled aqueous solutions of glucose and poly(ethylene glycol)s as studied by dielectric spectroscopy [J].
Tyagi, M ;
Murthy, SSN .
CARBOHYDRATE RESEARCH, 2006, 341 (05) :650-662
[89]  
Wang Z., 2016, J APPL PHYS IN PRESS
[90]   Dynamics of protein hydration water [J].
Wolf, M. ;
Emmert, S. ;
Gulich, R. ;
Lunkenheimer, P. ;
Loidl, A. .
PHYSICAL REVIEW E, 2015, 92 (03)