An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites

被引:148
|
作者
Palaniselvam, Thangavelu [1 ]
Aiyappa, Harshitha Barike [1 ]
Kurungot, Sreekumar [1 ]
机构
[1] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
关键词
FUEL-CELL CONDITIONS; FE-BASED CATALYSTS; POROUS GRAPHENE; MEMBRANE; MONOLAYER; STORAGE;
D O I
10.1039/c2jm35128e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple way to simultaneously create pores and nitrogen doped active sites on graphene for the electrochemical oxygen reduction reaction (ORR) is developed. The key aspect of the process is the in-situ generation of Fe2O3 nanoparticles and their concomitant dispersion on graphene by pyrolyzing graphene oxide (GO) with the iron phenanthroline complex. Thus the deposited Fe2O3 nanoparticles act as the seeds for pore generation by etching the carbon layer along the graphene-Fe2O3 interface. Detection of the presence of Fe3C along with Fe2O3 confirms carbon spill-over from graphene as a plausible step involved in the pore engraving process. Since the process offers a good control on the size and dispersion of the Fe2O3 nanoparticles, the pore size and distribution also could be managed very effectively in this process. As the phenanthroline complex decomposes and gives Fe2O3 nanoparticles and subsequently the pores on graphene, the unsaturated carbons along the pore openings simultaneously capture nitrogen of the phenanthroline complex and provide very efficient active sites for ORR under alkaline conditions. The degree of nitrogen doping and hence the ORR activity could be further improved by subjecting the porous material for a second round of nitrogen doping using iron-free phenanthroline. This porous graphene enriched with the N-doped active sites effectively reduces oxygen molecule through a 3e(-) pathway, suggesting a preferential shift towards the more favourable 4e(-) route compared to the 2e(-) reaction as reported for many N-doped carbon nano-morphologies. The 90 mV onset potential difference for oxygen reduction as compared to the state-of-the art 20 wt% Pt/C catalyst is significantly low compared to the overpotentials in the range of 120-200 mV reported in the literature for few N-doped graphenes.
引用
收藏
页码:23799 / 23805
页数:7
相关论文
共 50 条
  • [1] Facile preparation of nitrogen-doped graphene as an efficient oxygen reduction electrocatalyst
    Gao, Xiaochun
    Wang, Liwei
    Ma, Jizhen
    Wang, Yueqing
    Zhang, Jintao
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (09): : 1582 - 1590
  • [2] Heteroatom (Nitrogen/Sulfur)-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Zhang, Jian
    Wang, Jia
    Wu, Zexing
    Wang, Shuai
    Wu, Yumin
    Liu, Xien
    CATALYSTS, 2018, 8 (10):
  • [3] Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction
    Wu, Jingjie
    Ma, Lulu
    Yadav, Ram Manohar
    Yang, Yingchao
    Zhang, Xiang
    Vajtai, Robert
    Lou, Jun
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) : 14763 - 14769
  • [4] MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Kai
    Gu, Wei
    Zhao, Longyun
    Zhang, Cuiling
    Peng, Weidong
    Xian, Yuezhong
    ELECTROCHIMICA ACTA, 2015, 169 : 142 - 149
  • [5] Titanium Nitride Nanocrystals on Nitrogen-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction
    Liu, Mengjia
    Dong, Youzhen
    Wu, Yongmin
    Feng, Hongbin
    Li, Jinghong
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (44) : 14781 - 14786
  • [6] Nitrogen doped nanoporous graphene: an efficient metal-free electrocatalyst for the oxygen reduction reaction
    Yadegari, Amir
    Samiee, Leila
    Tasharrofi, Saeedeh
    Tajik, Sanaz
    Rashidi, Alimorad
    Shoghi, Fatemeh
    Rasoulianboroujeni, Morteza
    Tahriri, Mohammadreza
    Rowley-Neale, Samuel J.
    Banks, Craig E.
    RSC ADVANCES, 2017, 7 (87): : 55555 - 55566
  • [7] Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation
    Feng, Leiyu
    Yang, Lanqin
    Huang, Zujing
    Luo, Jingyang
    Li, Mu
    Wang, Dongbo
    Chen, Yinguang
    SCIENTIFIC REPORTS, 2013, 3
  • [8] Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene
    Xing, Tan
    Zheng, Yao
    Li, Lu Hua
    Cowie, Bruce C. C.
    Gunzelmann, Daniel
    Qiao, Shi Zhang
    Huang, Shaoming
    Chen, Ying
    ACS NANO, 2014, 8 (07) : 6856 - 6862
  • [9] Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction
    Ouyang, Wenpeng
    Zeng, Dongrong
    Yu, Xiang
    Xie, Fangyan
    Zhang, Weihong
    Chen, Jian
    Yan, Jing
    Xie, Fangjing
    Wang, Lei
    Meng, Hui
    Yuan, Dingsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 15996 - 16005
  • [10] Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation
    Leiyu Feng
    Lanqin Yang
    Zujing Huang
    Jingyang Luo
    Mu Li
    Dongbo Wang
    Yinguang Chen
    Scientific Reports, 3