A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte

被引:25
作者
Jeong, Goojin [1 ]
Kim, Hansu [2 ]
Lee, Hyo Sug [3 ]
Han, Young-Kyu [4 ]
Park, Jong Hwan [1 ,5 ]
Jeon, Jae Hwan [1 ,2 ]
Song, Juhye [1 ,2 ]
Lee, Keonjoon [4 ]
Yim, Taeeun [1 ]
Kim, Ki Jae [1 ]
Lee, Hyukjae [5 ]
Kim, Young-Jun [1 ]
Sohn, Hun-Joon [6 ]
机构
[1] Korea Elect Technol Inst, Adv Batteries Res Ctr, Songnam 463816, South Korea
[2] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[3] Samsung Adv Inst Technol, CAE Grp, Yongin 446712, South Korea
[4] Dongguk Univ, Dept Energy & Mat Engn, Seoul 100715, South Korea
[5] Andong Natl Univ, Sch Mat Sci & Engn, Andong 760745, South Korea
[6] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
关键词
ELECTROLYTE; LITHIUM; PERFORMANCE; CHALLENGES; CHEMISTRY; CATHODE;
D O I
10.1038/srep12827
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g(-1) based on the mass of catholyte and carbon electrode with an operating voltage of 3V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na-SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system.
引用
收藏
页数:9
相关论文
共 31 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   HISTORICAL DEVELOPMENT OF SECONDARY LITHIUM BATTERIES [J].
BRANDT, K .
SOLID STATE IONICS, 1994, 69 (3-4) :173-183
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   INORGANIC ELECTROLYTE LI/SO2 RECHARGEABLE SYSTEM - DEVELOPMENT OF A PROTOTYPE HERMETIC C-CELL AND EVALUATION OF ITS PERFORMANCE AND SAFETY CHARACTERISTICS [J].
DEY, AN ;
KUO, HC ;
PILIERO, P ;
KALLIANIDIS, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (09) :2115-2120
[5]   INORGANIC ELECTROLYTE LI/CUCL2 RECHARGEABLE CELL [J].
DEY, AN ;
BOWDEN, WL ;
KUO, HC ;
GOPIKANTH, ML ;
SCHLAIKJER, C ;
FOSTER, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (06) :1618-1621
[6]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[7]   LI/SO2 RECHARGEABLE BATTERIES [J].
FEY, GTK .
JOURNAL OF POWER SOURCES, 1991, 35 (02) :153-162
[8]   NEW HIGHLY CONDUCTIVE INORGANIC ELECTROLYTES - THE LIQUID SO2 SOLVATES OF THE ALKALI AND ALKALINE-EARTH METAL TETRACHLOROALUMINATES [J].
FOSTER, DL ;
KUO, HC ;
SCHLAIKJER, CR ;
DEY, AN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (11) :2682-2686
[9]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[10]   CYCLIC VOLTAMMETRIC AND RAMAN-SPECTROSCOPIC STUDIES OF THE LI/LIA1CL(4)/SO2 AND LI/LIGACL4/SO2 RECHARGEABLE SYSTEMS [J].
GOLEDZINOWSKI, M ;
DORE, RJ ;
HILL, IR .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :356-361